Taxonomy - Real-life applications





T HE U RGE TO C LASSIFY

One might ask what all the fuss is about. Why is classification so important? We attempt to answer that question from a few angles, including a brief look at the lengthy historical quest to develop a workable taxonomic system. But what was the original impulse that motivated that quest? One clue can be found in the Greek roots of the word taxonomy: taxis, or "arrangement," and nomos, or "law." The search for a taxonomic system represents humankind's desire to make order out of the complexities with which nature presents us. When it comes to the organization of ideas (including ideas about the varieties of life-forms), this desire for order is more than a mere preference. It is a necessity.

THE ANALOGY TO A LIBRARY.

Imagine a library without any organizational system, with books simply crammed willy-nilly on the shelves. Such a place would be totally chaotic, and if one happened to find a book one was looking for, it would be a case of pure luck. The odds would be weighted heavily against such luck, especially in a university library or a large municipal or regional one. Just as a good-size university library has upward of a million volumes, and many large university libraries have several million, so there are at least a couple of million identified species, and the total may be much larger. Some entomologists (scientists who study insects) speculate that there may be ten million species of insect alone.

THE LURE OF A NEW SPECIES.

When a zoologist or botanist discovers what he or she believes to be a new species, the taxonomic system provides a standard against which to check it—rather as you would do if you thought you had discovered a book that was not in the library. If the "new" species matches an established one, that may be the end of the story—unless the scientist has discovered a new aspect of the species or a new subspecies. And if there is no match in the taxonomic "library," the scientist has discovered an entirely new life-form, with all the grand and terrifying ramifications that may ensue.

The new species might be an herb from which a cure can be synthesized for a devastating disease, or it could be a parasite that carries a new and previously unknown malady. Whatever it is, it is better to know about it than not to know, and though the vast majority of "new" species are not nearly as exciting as the preceding paragraph would imply, each has its part to play in the overall balance of life. Discovery of new species is particularly important when those species are endangered or might be in the process of disappearing even as they are identified.

N ONSCIENTIFIC T AXONOMY

Without knowing anything about scientific taxonomy, almost anyone can begin to classify animals and perhaps plants. If we limit the discussion purely to animals, there are many basic parameters according to which we could classify them, just off the tops of our heads, as it were. For example, there are aquatic and terrestrial animals, and these general groupings can be broken down further according to biome or habitat (see Biomes). There are animals that walk, fly, swim, slither, or move by some other means. Animals can be divided according to their forms of reproduction, whether asexual or sexual, oviparous or viviparous (expelling or retaining a fertilized egg, respectively), and so on. As discussed in Food Webs, animals may be classified as herbivores, carnivores, omnivores, or detritivores or as primary, secondary, or tertiary consumers. They may be endothermic or ectothermic (warm-blooded or cold-blooded), and they may be covered with scales, feathers, fur, or skin. (In the last case, that skin may be protected by either mucus or hair.)

On and on go the categories, and if one is inclined toward a classifying mind, this kind of mental exercise can be fun. Certainly, little children enjoy it, and many educational programs and games call on the child to group animals thus. Although these kinds of groupings, and the efforts to place animals into one group or another, constitute a form of classification, there is a great difference between this and scientific taxonomy.

SCIENCE VERSUS "COMMON SENSE."

Taxonomy is tied closely to evolutionary study, and Darwin's theory of evolution was a turning point in the history of scientific classification. Thus, taxonomists are concerned more with the evolutionary patterns that link organisms than they are with what may be only superficial similarities. Habitat, for instance, is significant in studying biomes, but it seldom plays a role in taxonomy. Nor is the ability to fly, as we have noted, necessarily an indicator of taxonomic similarities.

A striking example of the difference between scientific taxonomy and "common sense" classification is the fact that whales and dolphins are grouped along with other mammals (class Mammalia) rather than with fish and other creatures that most readily come to mind when thinking of aquatic organisms. In fact, whales and dolphins share not only a wide array of primitive characteristics with mammals (for example, the pentadactyl limb described earlier) but also the derived characteristic that defines mammal : the secreting of milk from mammary glands, by which a mother feeds her young. Not only is it impossible to get milk from a fish (even family Chanidae, known by the common name "milkfish"), but fish lack even that primitive characteristic, the pentadactyl limb, that links mammals, at least distantly, with nonmammalian creatures, such as birds (class Aves).

COMMON TERMS AND FOLK TAXONOMY.

For the sake of convenience, in many places throughout this book, common terms such as bird, horse, fish, and so forth are used. But common terms are far from adequate in a scientific context, because such terminology can be deceptive, as exemplified by the nonduck "ducks" mentioned earlier. Likewise, shellfish and starfish are not "fish" as that term is usually understood. But while common terminology can be misleading, sometimes correlations with scientific taxonomy can be found in what is known as folk taxonomy. The latter is a term for the taxonomic systems applied in relatively isolated non-Western societies. For example, the folk taxonomy of native peoples in New Guinea identified 136 bird species in the mountains of that island, a figure that came amazingly close to the 137 species identified by the German-born

ILLUSTRATION OF A SEA MONSTER FROM "DE NATURA RERUM " BY ALBERTUS MAGNUS. DURING THE MIDDLE AGES, TAXONOMIC WRITINGS CONSISTED PRIMARILY OF BOOKS OF IMAGINARY CREATURES; THE FIRST SIGNS OF SCIENTIFIC REAWAKENING IN TAXONOMY CAME WITH PLANT AND ANIMAL CATALOGUES BY SUCH MEDIEVAL SCHOLARS AS MAGNUS. (© Gianni Dagli Orti/Corbis. Reproduced by permission.)
I LLUSTRATION OF A SEA MONSTER FROM "D E NATURA RERUM " BY A LBERTUS M AGNUS . D URING THE M IDDLE A GES , TAXONOMIC WRITINGS CONSISTED PRIMARILY OF BOOKS OF IMAGINARY CREATURES; THE FIRST SIGNS OF SCIENTIFIC REAWAKENING IN TAXONOMY CAME WITH PLANT AND ANIMAL CATALOGUES BY SUCH MEDIEVAL SCHOLARS AS M AGNUS . (
© Gianni Dagli Orti/Corbis
. Reproduced by permission. )
American evolutionary biologist Ernst Mayr (1904-) when he studied New Guinea's birds using scientific methods.

A RISTOTLE , L INNAEUS , D ARWIN , AND B EYOND

Among his many other accomplishments as a thinker, Aristotle is regarded as the father of the biological sciences and of taxonomy. Among the dominant ideas in his work as a philosopher are the concepts of hierarchy and classification, and thus he took readily to the idea of classifying things. At his school in Athens, he put his students to work on all sorts of taxonomic pursuits, from listing the champions at the Pythian Games (a festival like the Olympics) to classifying the constitutions of various Greek city-states to analyzing the body parts of animals. Aristotle himself dissected hundreds of animals to understand what made them tick, and he proved to be some 2,000 years ahead of his time in recognizing that the dolphin is a mammal and not a fish. His system of classification, however, was a far cry from the ideas that developed in nineteenth-century taxonomy; rather than searching for evolutionary lines of descent, he ranked animals in order of their physical complexity.

In most aspects of his other work, Aristotle established sharp distinctions between his own ideas and those of his teacher, Plato (427?-347 B.C. ). For example, Aristotle rejected Plato's position that every idea we can conceive is but a dim reflection of an essential concept—for example, that our idea of "red" is only a shadowy copy of the perfect notion of "redness." Yet in his taxonomy, Aristotle seemed to hark back to his days as Plato's star pupil. The Aristotelian principles of classification were governed by the idea that there are constant, unchanging "essences" that unite classes of organisms. This idea of essences is completely at odds with the empirical (experience-based) mentality that governs taxonomy today. Nonetheless, for two millennia, Aristotelian ideas represented the cutting edge in taxonomy and much else.

THE MIDDLE AGES AND RENAISSANCE.

After Aristotle and his brilliant student Theophrastus (371?-287? B.C. ), the father of botany, there would be no Western biological theorists of remotely comparable stature until the time of the Renaissance. In the meantime, taxonomy, as with so many other areas of learning in Europe, declined badly. During the Middle Ages, what passed for taxonomic writings consisted primarily of bestiaries, books full of fanciful and imaginary creatures, such as the unicorn. The first signs of scientific reawakening in the biological sciences in general, and taxonomy in particular, came with plant and animal catalogues by such great medieval scholars as Peter Abelard (1079-1142) and Albertus Magnus ( ca. 1200-1280). Even so, their work consisted primarily of summations of existing Aristotelian knowledge rather than new contributions.

In the sixteenth century, the Swiss scientist Konrad von Gessner (1516-1565) wrote Historia animalium (1551-1558), a groundbreaking work that included descriptions of many animals never before seen by most Europeans. Gesner also denounced the practice of including fictitious animals in bestiaries. Around the same time, the discoveries of new plant and animal species in the New World began to point up the need for a taxonomy that went beyond Aristotle's. The first scholar of the modern era to attack this problem was the Italian botanist Andrea Cesalpino (1519-1603), but nearly two centuries would pass before the development of a workable classification system.

LINNAEUS AND OTHERS.

The man who revolutionized taxonomy was born Carl von Linné but adopted the Latinized name Carolus Linnaeus. Even that late in scientific history, scholars still wrote chiefly in Latin, not because they were trying to adhere to tradition but because it remained a common language between educated people of different countries. Thus, Linnaeus's great work, which he first published in 1737 but revised numerous times, was named Systema naturae, or "The Natural System." Thanks to Linnaeus, Latin became enshrined permanently as the language of taxonomy the world over, but this was far from his only accomplishment.

It was Linnaeus who introduced binomial nomenclature, in a 1758 revision of his Systema, and also Linnaeus who established several of the obligatory rankings. Moreover, he instituted the first taxonomic keys, and his system, first applied in botany, became accepted in the zoological community as well. Others, including Baron Georges Cuvier (1769-1832), Michel Adanson (1727-1806), and Comte Georges Buffon (1707-1788), refined Linnaeus's system, but he stands as a towering figure in the discipline.

Later, the French natural philosopher Jean Baptiste de Lamarck (1744-1829) proposed a distinction between vertebrates, or animals with spinal columns, and invertebrates. Today this distinction is not considered as useful as it once was, since it is lopsided—that is, there are nine times as many invertebrates as vertebrates in the animal kingdom—but at the time, it represented an advancement. Less questionable were the distinctions introduced in 1866 by the German biologist Ernst Haeckel (1834-1919) between plants, animals, and single-cell organisms. As Haeckel reasoned, at the level of unicellular organisms, distinctions between plant and animal really make no sense.

DARWIN AND THE TWENTIETH CENTURY.

By far the most influential figure in taxonomy during the nineteenth century was the man also recognized as the most influential figure in all of biology during that era: Darwin. Whereas Linnaeus had retained the Aristotelian focus on the "essence" of the animal's features, Darwin swept away such notions and, in his Origin of Species (1859), proposed that the "community of descent" is "the one known cause of close similarity in organic beings" and therefore the only reasonable basis for taxonomic classification systems. As result of Darwin's work, taxonomists became much more oriented toward the representation of phylogeny in their classification systems. Therefore, instead of simply naming and cataloguing species, modern taxonomists also try to construct evolutionary trees showing the relationships between different species.

Since Darwin's time, taxonomy has seen numerous innovations, including the introduction of cladistics by Hennig and of numerical taxonomy by Sokal and Sneath. Taxonomists today make use of something unknown at the time of Darwin: DNA (deoxyribonucleic acid, a molecule that contains genetic codes for inheritance), which provides a wealth of evidence showing relationships between creatures. For example, a comparison of human and chimpanzee DNA reveals that we share more than 98% of the same genetic material, indicating that the two lines of descent are related more closely than either is to apes.

T HE F IVE K INGDOMS

There are several taxonomic systems, distinguished in part by the number of different kingdoms that each system recognizes. The system used in this book is that of five kingdoms, listed here, which is the result of modifications by the American biologists Lynn Margulis (1938-) and Karlene V. Schwartz (1936-) to the work of earlier taxonomists. (It should be noted that biologists are increasingly using a system of six kingdoms under three domains: eubacteria, arachaea, and eukaryotes. For the sake of simplicity, however, the five-kingdom system is used here.) These five kingdoms are as follows:

Monera : bacteria, blue-green algae, and spirochetes (spiral-shaped, undulating bacteria). Members of this kingdom, consisting of some 10,000 or more known species, are single-cell prokaryotes, meaning that the cell has no distinct nucleus. Some researchers have divided Monera into Eubacteria, or "true" bacteria, and Archae-bacteria, which are bacteria-like organisms capable of living in extremely harsh and sometimes anaerobic (oxygen-lacking) environments, such as in acids, saltwater, or sewage.

Protista (or Protoctista) : protozoans, slime molds (which resemble fungi), and algae other than the blue-green variety. Made up of more than 250,000 species, this kingdom is distinguished by the fact that its members are single-cell organisms, like the Monera. These organisms, however, are eukaryotes, or cells with a nucleus as well as organelles (sections of the cell that perform specific functions).

Fungi : fungi, molds, mushrooms, yeasts, mildews, and smuts (a type of fungus that afflicts certain plants). Fungi are multicellular, consisting of specialized eukaryotic cells arranged in a filamentous form (that is, a long, thin series of cells attached either to one another or to a long, thin cylindrical cell). There are some 100,000 varieties of fungi.

Plantae : plants, of which there are upward of 250,000 species. Although plant is a common term, there is no universally accepted definition that includes all plants and excludes all nonplants. One of the most important characteristics of plants is the fact that they receive their nutrition almost purely through photosynthesis. Beyond the plant kingdom, this is true only of a few protests and bacteria. (For the most part, the three lower kingdoms obtain nutrition through absorption.) Other characteristics of plants include the fact that they are incapable of locomotion; have cells that contain a form of carbohydrate called cellulose, making their cell walls more or less rigid; are capable of nearly unlimited growth at certain localized regions (unlike most animals, which have set numbers of limbs and so forth); and have no sensory or nervous system.

Animalia : animals, of which there are more than 1,000,000 species. Like plants, animals are characterized by specialized eukaryotic cells, but also like plants, the comprehensive definition of animal is not as obvious as one might imagine. Mobility, or a means of locomotion, is not a defining characteristic, since sponges and corals are considered animals. The principal difference between animals and plants is at the cellular level: animals either lack cells walls entirely or have highly permeable walls, unlike the cellulose cell walls in plants. Another defining characteristic of animal is that they obtain nutrition by feeding on other organisms. Additionally, animals usually have more or less fixed morphological characteristics and possess a nervous system. The fact that most animals are mobile helps account for the large number of animal species compared with those of other kingdoms; over the course of evolutionary history, mobility brought about the introduction of animals to a wide range of environments, which required a wide range of adaptations.

A DIVER INSIDE A BARREL SPONGE ALONG A CORAL REEF IN THE CARIBBEAN. MOBILITY, OR A MEANS OF LOCOMOTION, IS NOT A DEFINING CHARACTERISTIC OF KINGDOM ANIMALIA ; INDEED, SPONGES AND CORALS ARE CONSIDERED ANIMALS. (© Jeffrey L. Rotman/Corbis. Reproduced by permission.)
A DIVER INSIDE A BARREL SPONGE ALONG A CORAL REEF IN THE C ARIBBEAN . M OBILITY , OR A MEANS OF LOCOMOTION , IS NOT A DEFINING CHARACTERISTIC OF KINGDOM A NIMALIA ; INDEED , SPONGES AND CORALS ARE CONSIDERED ANIMALS . (
© Jeffrey L. Rotman/Corbis
. Reproduced by permission. )

Space does not permit a discussion of the various phyla, let alone the smaller divisions, inanything like the detail we have accorded to kingdoms. Furthermore, the distinctions among most phyla, apart from higher animals and some plants, makes for rather dry reading to a nonscientist. These divisions are discussed in furtherdetail, however, within the essays Species and Speciation. The latter essays also address the definition of species, a great and continuing challenge that faces taxonomists.

T AXONOMY IN A CTION

Two stories reported in National Geographic News online (see "Where to Learn More") in 2001 and 2002 illustrate the fact that scientific classification is an ongoing process, and that the world of taxonomy is frequently home to controversies and surprises. Lee R. Berger of the Geographic reported the first story, on December 17, 2001, under the heading "How Do You Miss a Whole Elephant Species?" As it turns out, there are not just two species of elephant, as had long been believed, but three.

In addition to the Asian elephant ( Elephas maximus ) scientists had long recognized the African savanna elephant, or Loxodonta africana, as a second species. However, DNA testing (see Genetics and Genetic Engineering) in 2001 revealed a second African variety, Loxodonta cyclotisare or the African forest elephant, formerly believed to constitute merely a subspecies.

The news was not entirely new: as early as a century prior to the announcement of the "new" species, zoologists had begun to suspect that the forest elephant was a separate grouping distinguished by a number of characteristics. For example, the forest elephant is physically smaller, with males seldom measuring more than 8 ft. (2.5 m) at the shoulder, as compared to 13 ft. (4 m) for a large savanna male. Additionally, ivory samples confiscated from poachers or illegal hunters have revealed that the material in the tusks of the forest variety is pinker and harder than that of its savanna counterpart.

Recognition of the third elephant species followed years of argument as to whether the two African varieties are capable of interbreeding, which would indicate that they are not separate species. That debate was rendered moot by the DNA studies, which showed that the African forest and savanna elephants are less closely related genetically than are lions and tigers, or horses and zebras.

A "NEW" INSECT ORDER.

The identification of the forest elephant in 2001 was a major taxonomic event, inasmuch as the elephant itself is a large and commonly known creature. However, it was still a matter only of identifying a new species, whereas in 2002, for the first time in 87 years, taxonomists identified an entirely new insect order. Actually, the order consists of a single known species, but this one is so different from others that it must be grouped separately. Discovered in Namibia, in southwestern Africa, the creature was given the nickname "the gladiator" in honor of the Academy Award-winning 2000 film of that name.

Entomologist Oliver Zompro of the Max Planck Institute of Limnology in Plön, Germany, described the creature as "a cross between a stick insect, a mantid, and a grasshopper," according to the Geographic. Because its first body segment is the largest, it is distinguished from a stick insect, whereas it differs from a mantid inasmuch as it uses both fore and mid-legs to capture prey. And while it looks like a grasshopper, "the gladiator" cannot jump.

Measuring as much as 1.6 in. (4 cm) long, the insect, whose order is designated as Mantophasmatodea, is a carnivorous, nocturnal creature. Its discovery raised the number of known insect orders to 31, a discovery that Piotr Naskrecki, director of the Conservation International Invertebrate Diversity Initiative, compared to finding a mastodon or saber-toothed tiger. Colorado State University ecologist Diana Wall described the discovery as "tremendously exciting" and told the Geographic, "This new order could be a missing link to determining relationships between insects and other groups. … Every textbook discussing the orders of insects will now need to be rewritten."

WHERE TO LEARN MORE

Classification—The Dinosaur FAQ (Web site). <http://www.miketaylor.org.uk/dino/faq/index.html#4> .

The Germplasm Resources Information Network (GRIN), Agricultural Research Service (Web site). <http://www.ars-grin.gov/npgs/tax/> .

Goto, H. E. Animal Taxonomy. London: Arnold, 1982.

Lacey, Elizabeth A., and Robert Shetterley. What's the Difference?: A Guide to Some Familiar Animal Look-Alikes. New York: Clarion Books, 1993.

Margulis, Lynn, and Karlene V. Schwartz. Five Kingdoms: An Illustrated Guide to the Phyla of Life on Earth. New York: W. H. Freeman, 1988.

National Geographic News (Web site). <http://news.nationalgeographic.com/news/> .

O'Neil, Dennis. Classification of Living Things/Palomar College (Web site). <http://anthro.palomar.edu/animal/> .

Parker, Steve. Eyewitness Natural World. New York: Dorling Kindersley, 1994.

Simpson, George Gaylord. Principles of Animal Taxono my. New York: Columbia University Press, 1961.

Taxonomy Browser, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health (Web site). <http://www.ncbi.nlm.nih.gov/Taxonomy/> .

The Tree of Life Web Project (Web site). <http://beta.tolweb.org/tree/> .

Tudge, Colin. The Variety of Life: A Survey and a Celebration of All the Creatures That Have Ever Lived. London: Oxford University Press, 2000.

Whyman, Kathryn. The Animal Kingdom: A Guide to Vertebrate Classification and Biodiversity. Austin, TX: Raintree Steck-Vaughn, 1999.

Willis, Paul. "Dinosaurs and Birds: The Story." Australian Broadcasting Corporation (Web site). <http://www.abc.net.au/science/slab/dinobird/story.htm> .