Alkali Metals - Real-life applications



Lithium

Swedish chemist Johan August Arfvedson (1792-1841) discovered lithium in 1817, and named it after the Greek word for "stone." Four years later, another scientist named W. T. Brande succeeded in isolating the highly reactive metal. Most of the lithium available on Earth's crust is bound up with aluminum and silica in minerals.

Since the time of its discovery, lithium has been used in lubricants, glass, and in alloys of lead, aluminum, and magnesium. In glass, it acts as a strengthening agent; likewise, metal alloys that contain lithium tend to be stronger, yet less dense. In 1994, physicist Jeff Dahn of Simon Fraser University in British Columbia, Canada, developed a lithium battery. Not only was the battery cheaper to produce than the traditional variety, Dahn and his colleagues announced, but the disposal of used lithium batteries presented less danger to the environment.

One of the most striking uses of lithium occurred in 1932, when English physicist John D. Cockcroft (1897-1967) and Irish physicist Ernest Walton (1903-1995) built the first particle accelerator. By bombarding lithium atoms, they produced highly energized alpha particles. This was the first nuclear reaction brought about by the use of artificially accelerated particles—in other words, without the need for radioactive materials such as uranium-235. Cockcroft's and Walton's experiment with lithium thus proved pivotal to the later creation of the atomic bomb.

LITHIUM IN PSYCHIATRIC TREATMENT.

The most important application of lithium, however, is in treatment for the psychiatric condition once known as manic depression, today identified as bipolar disorder. Persons suffering from bipolar disorder tend toward mood swings: during some periods the patient is giddy ("manic," or in a condition of "mania"), and during others the person is suicidal. Indeed, prior to the development of lithium as a treatment for bipolar disorder, as many as one in five patients with this condition committed suicide.

Doctors do not know exactly how lithium does what it does, but it obviously works: between 70% and 80% of patients with the bipolar condition respond well to treatment, and are able to go on with their lives in such a way that their condition is no longer outwardly evident. Lithium is also administered to patients who suffer unipolar depression and some forms of schizophrenia.

EARLY MEDICINAL USES OF LITHIUM.

It is said that the great Greco-Roman physician Galen (129-c. 199) counseled patients suffering from "mania" to bathe in, and even drink the water from, alkaline springs. If so, he was nearly 2,000 years ahead of his time. Even in the 1840s, not long after lithium was discovered, the mineral—mixed with carbonate or citrate—was touted as a cure for insomnia, gout, epilepsy, diabetes, and even cancer.

None of these alleged cures proved a success; nor did a lithium chloride treatment administered in the 1940s as a salt substitute for patients on low-sodium diets. As it turned out, when not enough sodium is present, the body experiences a buildup of sodium's sister element, lithium. The result was poisoning, which in some cases proved fatal.

CADE'S BREAKTHROUGH.

Then in 1949, Australian psychiatrist John Cade discovered the value of lithium for psychiatric treatment. He approached the problem from an entirely different angle, experimenting with uric acid, which he believed to be a cause of manic behavior. In administering the acid to guinea pigs, he added lithium salts merely to keep the uric acid soluble—and was very surprised by what he discovered. The uric acid did not make the guinea pigs manic, as he had expected; instead, they became exceedingly calm.

Cade changed the focus of his research, and tested lithium treatment on ten manic patients. Again, the results were astounding: one patient who had suffered from an acute bipolar disorder (as it is now known) for five years was released from the hospital after three months of lithium treatment, and went on to lead a healthy, normal life.

Encouraged by the changes he had seen in patients who received lithium, Cade published a report on his findings in the Medical Journal of Australia , but his work had little impact at the time. Nor did the idea of lithium treatment meet with an enthusiastic reception on the other side of the Pacific: in the aftermath of the failed experiments with lithium as a sodium substitute in the 1940s, stories of lithium poisoning were widespread in the United States.

LITHIUM TODAY.

Were it not for the efforts of Danish physician Mogens Schou, lithium might never have taken hold in the medical community. During the 1950s and 1960s, Schou campaigned tirelessly for recognition of lithium as a treatment for manic-depressive illness. Finally during the 1960s, the U.S. Food and Drug Administration began conducting trials of lithium, and approved its use in 1974. Today some 200,000 Americans receive lithium treatments.

A non-addictive and non-sedating medication, lithium—as evidenced by the failed experiment in the 1940s—may still be dangerous in large quantities. It is absorbed quickly into the bloodstream and carried to all tissues in the brain and body before passing through the kidneys. Both lithium and sodium are excreted through the kidneys, and since sodium affects lithium excretion, it is necessary to maintain a proper quantity of sodium in the body. For this reason, patients on lithium are cautioned to avoid a low-salt diet.

Sodium

Sodium compounds had been known for some time prior to 1807, when English chemist Sir Humphry Davy (1778-1829) succeeded in isolating sodium itself. The element is represented by a chemical symbol (Na), reflecting its Latin name, natrium. In its pure form, sodium has a bright, shiny surface, but in order to preserve this appearance, it must be stored in oil: sodium reacts quickly with oxygen, forming a white crust of sodium oxide.

Pure sodium never occurs in nature; instead, it combines readily with other substances to form compounds, many of which are among the most widely used chemicals in industry. It is also highly soluble: thus whereas sodium and potassium occur in crystal rocks at about the same ratio, sodium is about 30 times more abundant in sea-water than its sister element.

OBTAINING SODIUM CHLORIDE.

Though the extraction of sodium involves the use of a special process, the metal is plentiful in the form of sodium chloride—better known as table salt. In fact, the term salt in chemistry refers generally to any combination of a metal with a nonmetal. More specifically, salts are (along with water) the product of reactions between acids and bases.

Sodium chloride is so easy to obtain, and therefore so cheap, that most industries making other sodium compounds use it, simply separating out the chloride (as described below) before adding other elements. The United States is the world's largest producer of sodium chloride, obtained primarily from brine, a term used to describe any solution of sodium chloride in water. Brine comes from seawater, subterranean wells, and desert lakes, such as the Great Salt Lake in Utah. Another source of sodium chloride is rock salt, created underground by the evaporation of long-buried saltwater seas.

Other top sodium-chloride-producing nations include China, Germany, Great Britain, France, India, and various countries in the former Soviet Union. Salt may be cheap and plentiful for the world in general, but there are places where it is a precious commodity. One such place is the Sahara Desert, where salt caravans ply a brisk trade today, much as they have since ancient times.

ISOLATING SODIUM.

Modern methods for the production of sodium represent an improvement in the technique Davy used in 1807, although the basic principle is the same. Though several decades passed before electricity came into widespread public use, scientists had been studying its properties for years, and Davy applied it in a process called electrolysis.

Electrolysis is the use of an electric current to produce a chemical reaction—in this case, to separate sodium from the other element or elements with which it is combined. Davy first fused or melted a sample of sodium chloride, then electrolyzed it. Using an electrode, a device that conducts electricity and is used to emit or collect electric charge, he separated the sodium chloride in such a way that liquid sodium metal collected on the cathode, or negatively charged end. Meanwhile, the gaseous chlorine was released through the anode, or the positively charged end.

The apparatus used for sodium separation today is known as the Downs cell, after its inventor, J. C. Downs. In a Downs cell, sodium chloride and calcium chloride are combined in a molten mixture in which the presence of calcium chloride lowers the melting point of the sodium chloride by more than 30%. When an electric current is passed through the mixture, sodium ions move to the cathode, where they pick up electrons to become sodium atoms. At the same time, ions of chlorine migrate to the anode, losing electrons to become chlorine atoms.

Sodium is a low-density material that floats on water, and in the Downs cell, the molten sodium rises to the top, where it is drawn off. The chlorine gas is allowed to escape through a vent at the top of the anode end of the cell, and the resulting sodium metal—that is, the elemental form of sodium—is about 99.8% pure.

USES FOR SODIUM CHLORIDE.

As indicated earlier, sodium chloride is by far the most widely known and commonly used sodium compound—and this in itself is a distinction, given the fact that so many sodium compounds are a part of daily life. Today people think of salt primarily as a seasoning to enhance the taste of food, but prior to the development of refrigeration, it was vital as a preservative because it kept microbes away from otherwise perishable food items.

Salt does not merely improve the taste of food; it is an essential nutrient. Sodium compounds regulate transmission of signals through the nervous system, alter the permeability of membranes, and perform a number of other life-preserving functions. On the other hand, too much salt can aggravate high blood pressure. Thus, since the 1970s and 1980s, food manufacturers have increasingly offered products low in sodium, a major selling point for health-conscious consumers.

OTHER SODIUM COMPOUNDS.

In addition to its widespread use in consumer goods, sodium chloride is the principal source of sodium used in making other sodium compounds. These include sodium hydroxide, for manufacturing cellulose products such as film, rayon, soaps, and paper, and for refining petroleum. In its application as a cleaning solution, sodium hydroxide is known as caustic soda or lye.

Another widely used sodium compound is sodium carbonate or, soda ash, applied in glass-making, paper production, textile manufacturing, and other areas, such as the production of soaps and detergents. Sodium also can be combined with carbon to produce sodium bicarbonate, or baking soda. Sodium sulfate, sometimes known as salt cake, is used for making cardboard and kraft paper. Yet another widely used sodium compound is sodium silicate, or "water glass," used in the production of soaps, detergents, and adhesives; in water treatment; and in bleaching and sizing of textiles.

Still other sodium compounds used by industry and/or consumers include sodium borate, or borax; sodium tartrate, or sal tartar; the explosive sodium nitrate, or Chilean salt-peter; and the food additive monosodium glutamate (MSG). Perhaps ironically, there are few uses for pure metallic sodium. Once applied as an "anti-knock" additive in leaded gasoline, before those products were phased out for environmental reasons, metallic sodium is now used as a heat-exchange medium in nuclear reactors. But its widest application is in the production of the many other sodium compounds used around the world.

Potassium

In some ways, potassium is a strange substance, as evidenced by its behavior in response to water. As everyone knows, water tends to put out a fire, and most explosives, when exposed to sufficient quantities of water, become ineffective. Potassium, on the other hand, explodes in contact with water and reacts violently with ice at temperatures as low as −148°F (−100°C). In a complete reversal of the procedures normally followed for most substances, potassium is stored in kerosene, because it might burst into flames if exposed to moist air!

Many aspects of potassium mirror those already covered with regard to sodium. The two have a number of the same applications, and in certain situations, potassium is used as a sodium substitute. Like sodium, potassium is never found alone in nature; instead, it comes primarily from sylvinite and carnalite, two ores containing potassium chloride. Also, like sodium, potassium was first isolated in 1807 by Davy, using the process of electrolysis described above. A few years later, a German chemist dubbed the newly isolated element "kalium," apparently a derivation of the Arabic qali , for "alkali"; hence the use of K as the chemical symbol for potassium.

USES FOR POTASSIUM.

Potassium has another similarity with sodium; although it was not isolated until the early nineteenth century, its compounds have been in use for many centuries. The Romans, for instance, used potassium carbonate, or potash, obtained from the ashes of burned wood, to make soap. During the Middle Ages, the Chinese applied a form of saltpeter, potassium nitrate, in making gunpowder. And in colonial America, potash went into the production of soap, glass, and other products.

The production of just one ton of potash required the burning of several acres' worth of trees—a wasteful practice in more ways than one. Though there was no environmentalist movement in those days, financial concerns never go out of style. In order to save the money lost by using up vast acres of timber, American industry in the nineteenth century sought another means of making potash. The many similarities between

IN THE SAHARA DESERT, SALT CARAVANS PLY A BRISK TRADE TODAY, MUCH AS THEY HAVE SINCE ANCIENT TIMES. HERE, TRADERS IN MALI LOAD A CAMEL FOR A SALT CARAVAN. (Nik Wheeler/Corbis. Reproduced by permission.)
I N THE S AHARA D ESERT , SALT CARAVANS PLY A BRISK TRADE TODAY , MUCH AS THEY HAVE SINCE ANCIENT TIMES . H ERE , TRADERS IN M ALI LOAD A CAMEL FOR A SALT CARAVAN . (
Nik Wheeler/Corbis
. Reproduced by permission.)
sodium and potassium provided a key, and the substitution of sodium carbonate for potassium carbonate saved millions of trees.

In 1847, German chemist Justus von Liebig (1803-1873) discovered potassium in living tissues. As a result, scientists became aware of the role this alkali metal plays in sustaining life: indeed, potassium is present in virtually all living cells. In the human body, potassium—which accounts for only 0.4% of the body's mass—is essential to the functioning of muscles. In larger quantities, however, it can be dangerous, causing a state of permanent relaxation known as potassium inhibition.

Since plants depend on potassium for growth, it was only logical that potassium, in the form of potassium chloride, was eventually applied as a fertilizer. This, at least, distinguishes it from its sister element: sodium, or sodium chloride, which can kill plants if administered to the soil in large enough quantities.

Another application of potassium is in the area pioneered by the Chinese about 800 years ago: the manufacture of fireworks and gunpowder from potassium nitrate. Like ammonium nitrate, made infamous by its use in the 1993 World Trade Center bombing and the Oklahoma City bombing in 1995, potassium nitrate doubles as a fertilizer.

Rubidium, Cesium, and Francium

The three heaviest alkali metals are hardly household names, though one of them, cesium, does have several applications in industry. Rubidium and cesium, discovered in 1860 by German chemist R. W. Bunsen (1811-1899) and German physicist Gustav Robert Kirchhoff (1824-1887), were the first elements ever found using a spectroscope. Matter emits electromagnetic radiation along various spectral lines, which can be recorded using a spectroscope and then analyzed to discern the particular "fingerprint" of the substance in question.

When Bunsen and Kirchhoff saw the bluish spectral lines emitted by one of the two elements, they named it cesium, after a Latin word meaning "sky blue." Cesium, which is very rare, appears primarily in compounds such as pollucite. It is used today in photoelectric cells, military infrared lamps, radio tubes, and video equipment. During the 1940s, American physicist Norman F. Ramsey, Jr. (1915-) built a highly accurate atomic clock based on the natural frequencies of cesium atoms.

Rubidium, by contrast, has far fewer applications, and those are primarily in areas of scientific research. On Earth it is found in pollucite, lepidolite, and carnallite. It is considerably more abundant than cesium, and vastly more so than francium. Indeed, it is estimated that if all the francium in Earth's crust were combined, it would have a mass of about 25 grams.

Francium was discovered in 1939 by French physicist Marguerite Perey (1909-1975), student of the famous French-Polish physicist and chemist Marie Curie (1867-1934). For about four decades, scientists had been searching for the mysterious Element 87, and while studying the decay products of an actinium isotope, actinium-227, Perey discovered that one out of 100 such atoms decayed to form the undiscovered element. She named it francium, after her home-land. Though the discovery of francium solved a mystery, the element has no known uses outside of its applications in research.

WHERE TO LEARN MORE

"Alkali Metals" (Web site). <http://www.midlink.com/~jfromm/elements/alkali.htm> (May 24, 2001).

"Alkali Metals" ChemicalElements.com (Web site). <http://www.chemicalelements.com/groups/alkali.html> (May 24, 2001).

"Hydrogen and the Alkali Metals." University of Colorado Department of Physics (Web site). <http://www.colorado.edu/physics/2000/periodic_table/alkali metals.html> (May 24, 2001).

Kerrod, Robin. Matter and Materials. Illustrated by Terry Hadler. Tarrytown, N.Y.: Benchmark Books, 1996.

Mebane, Robert C. and Thomas R. Rybolt. Metals. Illustrated by Anni Matsick. New York: Twenty-First Century Books, 1995.

Oxlade, Chris. Metal. Chicago, IL: Heinemann Library, 2001.

Snedden, Robert. Materials. Des Plaines, IL: Heinemann Library, 1999.

"Visual Elements: Group I—The Alkali Metals" (Web site). <http://www.chemsoc.org/viselements/pages/data/intro_groupi_data.html> (May 24, 2001).



Also read article about Alkali Metals from Wikipedia

User Contributions:

Comment about this article, ask questions, or add new information about this topic: