Alkaline Earth Metals - Real-life applications



Alkaline Earth Metals Real Life Applications 3233
Photo by: concept w

Beryllium

In the eighteenth century, French mineralogist René Just-Haüy (1743-1822) had observed that both emeralds and the mineral beryl had similar properties. French chemist Louis-Nicolas Vauquelin (1763-1829) in 1798 identified the element they had in common: beryllium (Be), which has an atomic number of 4 and an atomic mass of 9.01 amu. Some three decades passed before German chemist Friedrich Wöhler (1800-1882) and French chemist Antoine Bussy (1794-1882), working independently, succeeded in isolating the element.

Beryllium is found primarily in emeralds and aquamarines, both precious stones that are forms of the beryllium alluminosilicate compound beryl. Though it is toxic to humans, beryllium nonetheless has an application in the health-care industry: because it lets through more x rays than does glass, beryllium is often used in x-ray tubes.

Metal alloys that contain about 2% beryllium tend to be particularly strong, resistant to wear, and stable at high temperatures. Copper-beryllium alloys, for instance, are applied in hand tools for industries that use flammable solvents, since tools made of these alloys do not cause sparks when struck against one another. Alloys of beryllium and nickel are applied for specialized electrical connections, as well as for high-temperature uses.

Magnesium

English botanist and physician Nehemiah Grew (1641-1712) in 1695 discovered magnesium sulfate in the springs near the English town of Epsom, Surrey. This compound, called "Epsom salts" ever since, has long been noted for its medicinal value. Epsom salts are used for treating eclampsia, a condition that causes seizures in pregnant women. The compound is also a powerful laxative, and is sometimes used to rid the body of poisons—such as magnesium's sister element, barium.

For some time, scientists confused the oxide compound magnesia with lime or calcium carbonate, which actually involves another alkaline earth metal. In 1754, Scottish chemist and physicist Joseph Black (1728-1799) wrote "Experiments Upon Magnesia, Alba, Quick-Lime, and Some Other Alkaline Substances," an important work in which he distinguished between magnesia and lime. Davy in 1808 declared magnesia the oxide of a new element, which he dubbed magnesium, but some 20 years passed before Bussy succeeded in isolating the element.

Magnesium (Mg) has an atomic number of 12, and an atomic mass of 24.31 amu. It is found primarily in minerals such as dolomite and magnesite, both of which are carbonates; and in carnallite, a chloride. Magnesium silicates include asbestos, soapstone or talc, and mica. Not all forms of asbestos contain magnesium, but the fact that many do only serves to show the ways that chemical reactions can change the properties an element possesses in isolation.

AN IMPORTANT COMPONENT OF HEALTH.

Whereas magnesium is flammable, asbestos was once used in large quantities as a flame retardant. And whereas asbestos has been largely removed from public buildings throughout the United States due to reports linking asbestos exposure with cancer, magnesium is an important component in the health of living organisms. It plays a critical role in chlorophyll, the green pigment in plants that captures energy from sunlight, and for this reason, it is also used in fertilizers.

In the human body, magnesium ions (charged atoms) aid in the digestive process, and many people take mineral supplements containing magnesium, sometimes in combination with calcium. There is also its use as a laxative, already mentioned. Epsom salts, as befits their base or alkaline quality, are exceedingly bitter—the kind of substance a person only ingests under conditions of the most dire necessity. On the other hand, milk of magnesia is a laxative with a far less unpleasant taste.

MAGNESIUM GOES TO WAR.

It is a hallmark of magnesium's chemical versatility that the same element, so important in preserving life, has also been widely used in warfare. Just before World War I, Germany was a leading manufacturer of magnesium, thanks in large part to a method of electrolysis developed by German chemist R. W. Bunsen (1811-1899). When the United States went to war against Germany, American companies began producing magnesium in large quantities.

Bunsen had discovered that powdered magnesium burns with a brilliant white flame, and in the war, magnesium was used in flares, tracer bullets, and incendiary bombs, which ignite and burn upon impact. The bright light produced by burning magnesium has also led to a number of peacetime applications—for instance, in fireworks, and for flashes used in photography.

Magnesium saw service in another world war. By the time Nazi tanks rolled into Poland in 1939, the German military-industrial complex had begun using the metal for building aircraft and other forms of military equipment. America once again put its own war-production machine into operation, dramatically increasing magnesium output to a peak of nearly 184,000 tons (166,924,800 kg) in 1943.

STRUCTURAL APPLICATIONS.

Magnesium's principal use in World War I was for its incendiary qualities, but in World War II it was primarily used as a structural metal. It is lightweight, but stronger per unit of mass than any other common structural metal. As a metal for building machines and other equipment, magnesium ranks in popularity only behind iron and aluminum (which is about 50% more dense than magnesium).

The automobile industry is one area of manufacturing particularly interested in magnesium's structural qualities. On both sides of the Atlantic, automakers are using or testing vehicle parts made of alloys of magnesium and other metals, primarily aluminum. Magnesium is easily cast into complex structures, which could mean a reduction in the number of parts needed for building a car—and hence a streamlining of the assembly process.

Among the types of sports equipment employing magnesium alloys are baseball catchers' masks, skis, racecars, and even horseshoes. Various brands of ladders, portable tools, electronic equipment, binoculars, cameras, furniture, and luggage also use parts made of this lightweight, durable metal.

Calcium

Davy isolated calcium (Ca) by means of electrolysis in 1808. The element, whose name is derived from the Latin calx, or "lime," has an atomic number of 20, and an atomic mass of 40.08. The principal sources of calcium are limestone and dolomite, both of which are carbonates, as well as the sulfate gypsum.

In the form of limestone and gypsum, calcium has been used as a building material since ancient times, and continues to find application in that area. Lime is combined with clay to make cement, and cement is combined with sand and water to make mortar. In addition, when mixed with sand, gravel, and water, cement makes concrete. Marble—once used to build palaces and today applied primarily for decorative touches—also contains calcium.

The steel, glass, paper, and metallurgical industries use slaked lime (calcium hydroxide) and quicklime, or calcium oxide. It helps remove impurities from steel, and pollutants from smokestacks, while calcium carbonate in paper provides smoothness and opacity to the finished product. When calcium carbide (CaC 2 ) is added to water, it produces the highly flammable gas acetylene (C 2 H 2 ), used in welding torches. In various compounds, calcium is used as a bleach; a material in the production of fertilizers; and as a substitute for salt as a melting agent on icy roads.

The food, cosmetic, and pharmaceutical industries use calcium in antacids, toothpaste, chewing gum, and vitamins. To an even greater extent than magnesium, calcium is important to living things, and is present in leaves, bone, teeth, shells, and coral. In the human body, it helps in the clotting of blood, the contraction of muscles, and the regulation of the heartbeat. Found in green vegetables and dairy products, calcium (along with calcium supplements) is recommended for the prevention of osteoporosis. The latter, a condition involving a loss of bone density, affects elderly women in particular, and causes bones to become brittle and break easily.

Strontium

Irish chemist and physician Adair Crawford (1748-1795) and Scottish chemist and surgeon William Cumberland Cruikshank (1790-1800) in 1790 discovered what Crawford called "a new species of earth" near Strontian in Scotland. A year later, English chemist Thomas Charles Hope (1766-1844) began studying the ore found by Crawford and Cruikshank, which they had dubbed strontia.

In reports produced during 1792 and 1793, Hope explained that strontia could be distinguished from lime or calcium hydroxide on the

IN THIS 1960 PHOTO, A MOTHER TESTS HER SON'S MILK FOR SIGNS OF RADIOACTIVITY, THE RESULT OF NUCLEAR WEAPONS TESTING DURING THE 1950 S THAT INVOLVED THE RADIOACTIVE ISOTOPE STRONTIUM-90. THE ISOTOPE FELL TO EARTH IN A FINE POWDER, WHERE IT COATED THE GRASS, WAS INGESTED BY COWS, AND EVENTUALLY WOUND UP IN THE MILK THEY PRODUCED. (Bettmann/Corbis. Reproduced by permission.)
I N THIS 1960 PHOTO , A MOTHER TESTS HER SON ' S MILK FOR SIGNS OF RADIOACTIVITY , THE RESULT OF NUCLEAR WEAPONS TESTING DURING THE 1950 S THAT INVOLVED THE RADIOACTIVE ISOTOPE STRONTIUM -90. T HE ISOTOPE FELL TO EARTH IN A FINE POWDER , WHERE IT COATED THE GRASS , WAS INGESTED BY COWS , AND EVENTUALLY WOUND UP IN THE MILK THEY PRODUCED . (
Bettmann/Corbis
. Reproduced by permission.)
one hand, and baryta or barium hydroxide on the other, by virtue of its response to flame tests. Whereas calcium produced a red flame and barium a green one, strontia glowed a brilliant red easily distinguished from the darker red of calcium.

Once again, it was Davy who isolated the new element, using electrolysis, in 1808. Subsequently dubbed strontium (Sr), its atomic number is 38, and its atomic mass 87.62. Silvery white, it oxidizes rapidly in air, forming a pale yellow oxide crust on any freshly cut surface.

Though it has properties similar to those of calcium, the comparative rarity of strontium and the expense involved in extracting it offer no economic incentives for using it in place of its much more abundant sister element. Nonetheless, strontium does have a few uses, primarily because of its brilliant crimson flame. Therefore it is applied in the making of fireworks, signal flares, and tracer bullets—that is, rounds that emit a light as they fly through the air.

One of the more controversial "applications" of strontium involved the radioactive isotope strontium-90, a by-product of nuclear weapons testing in the atmosphere from the late 1940s onward. The isotope fell to earth in a fine powder, coated the grass, was ingested by cows, and eventually wound up in the milk they produced. Because of its similarities to calcium, the isotope became incorporated into the teeth and gums of children who drank the milk, posing health concerns that helped bring an end to atmospheric testing in the early 1960s.

Barium

Aspects of barium's history are similar to those of other alkaline earth metals. During the eighteenth century, chemists were convinced that barium oxide and calcium oxide constituted the same substance, but in 1774, Swedish chemist Carl Wilhelm Scheele (1742-1786) demonstrated that barium oxide was a distinct compound. Davy isolated the element, as he did two other alkaline earth metals, by means of electrolysis, in 1808.

Barium (Ba) has an atomic mass of 137.27 and an atomic number of 56. It appears primarily in ores of barite, a sulfate, and witherite, a carbonate. Barium sulfate is used as a white pigment in paints, while barium carbonate is applied in the production of optical glass, ceramics, glazed pottery, and specialty glassware. One of its most important uses is as a drill-bit lubricant—known as a "mud" or slurry—for oil drilling. Like a number of its sister elements, barium (in the form of barium nitrate) is used in fireworks and flares. Motor oil detergents for keeping engines clean use barium oxide and barium hydroxide.

Beryllium is not the only alkaline earth metal used in making x rays, nor is magnesium the only member of the family applied as a laxative. Barium is used in enemas, and barium sulfate is used to coat the inner lining of the intestines to allow a doctor to examine a patient's digestive system. (Though barium is poisonous, in the form of barium sulfate it is safe for ingestion because the compound does not dissolve in water or other bodily fluids.) Prior to receiving x rays, a patient may be instructed to drink a chalky barium sulfate liquid, which absorbs a great deal of the radiation emitted by the x-ray machine. This adds contrast to the black-and-white x-ray photo, enabling the doctor to make a more informed diagnosis.

Radium

Today radium (Ra; atomic number 88; atomic mass 226 amu) has few uses outside of research; nonetheless, the story of its discovery by Marie Curie and her husband Pierre (1859-1906), a French physicist, is a compelling chapter not only in the history of chemistry, but of human endeavor in general. Inspired by the discovery of uranium's radioactive properties by French physicist Henri Becquerel (1852-1908), Marie Curie became intrigued with the subject of radioactivity, on which she wrote her doctoral dissertation. Setting out to find other radioactive elements, she and Pierre refined a large quantity of pitchblende, an ore commonly found in uranium mines. Within a year, they had discovered the element polonium, but were convinced that another radioactive ingredient was present—though in much smaller amounts—in pitch-blende.

The Curies spent most of their savings to purchase a ton of ore, and began working to extract enough of the hypothesized Element 88 for a usable sample—0.35 oz (1 g). Laboring virtually without ceasing for four years, the Curies—by then weary and in financial difficulties—finally produced the necessary quantity of radium. Their fortunes were about to improve: in 1903 they shared the Nobel Prize in physics with Becquerel, and in 1911, Marie received a second Nobel, this one in chemistry, for her discoveries of polonium and radium. She is the only individual in history to win Nobels in two different scientific categories.

Because the Curies failed to patent their process, however, they received no profits from the many "radium centers" that soon sprung up, touting the newly discovered element as a cure for cancer. In fact, as it turned out, the hazards associated with this highly radioactive substance outweighed any benefits. Thus radium, which at one point was used in luminous paint and on watch dials, was phased out of use. Marie Curie's death from leukemia in 1934 resulted from her prolonged exposure to radiation from radium and other elements.

WHERE TO LEARN MORE

"Alkaline Earth Metals." ChemicalElements.com (Web site). <http://www.chemicalelements.com/groups/alkaline.html> > (May 25, 2001).

"The Alkaline Earth Metals" (Web site). <http://www.nidlink.com/~jfromm/elements/alkaline.htm> (May 25, 2001).

Ebbing, Darrell D.; R. A. D. Wentworth; and James P. Birk. Introductory Chemistry. Boston: Houghton Mifflin, 1995.

Kerrod, Robin. Matter and Materials. Illustrated by Terry Hadler. Tarrytown, N.Y.: Benchmark Books, 1996.

Mebane, Robert C. and Thomas R. Rybolt. Metals. Illustrated by Anni Matsick. New York: Twenty-First Century Books, 1995.

Oxlade, Chris. Metal. Chicago, IL: Heinemann Library, 2001.

Snedden, Robert. Materials. Des Plaines, IL: Heinemann Library, 1999.

"Visual Elements: Group 1—The Alkaline Earth Metals" (Web site). <http://www.chemsoc.org/viselements/pages/data/intro_groupii_data.html> (May 25, 2001).



Also read article about Alkaline Earth Metals from Wikipedia

User Contributions:

Comment about this article, ask questions, or add new information about this topic: