Measurement - Real-life applications



Measurement Real Life Applications 3260
Photo by: Alessio Cola

Standardized Units of Measure: Who Needs Them?

People use units of measure so frequently in daily life that they hardly think about what they are doing. A motorist goes to the gas station and pumps 13 gallons (a measure of volume) into an automobile. To pay for the gas, the motorist uses dollars—another unit of measure, economic rather than scientific—in the form of paper money, a debit card, or a credit card.

This is simple enough. But what if the motorist did not know how much gas was in a gallon, or if the motorist had some idea of a gallon that differed from what the gas station management determined it to be? And what if the value of a dollar were not established, such that the motorist and the gas station attendant had to haggle over the cost of the gasoline just purchased? The result would be a horribly confused situation: the motorist might run out of gas, or money, or both, and if such confusion were multiplied by millions of motorists and millions of gas stations, society would be on the verge of breakdown.

THE VALUE OF STANDARDIZATION TO A SOCIETY.

Actually, there have been times when the value of currency was highly unstable, and the result was near anarchy. In Germany during the early 1920s, for instance, rampant inflation had so badly depleted the value of the mark, Germany's currency, that employees demanded to be paid every day so that they could cash their paychecks before the value went down even further. People made jokes about the situation: it was said, for instance, that when a woman went into a store and left a basket containing several million marks out front, thieves ran by and stole the basket—but left the money. Yet there was nothing funny about this situation, and it paved the way for the nightmarish dictatorship of Adolf Hitler and the Nazi Party.

It is understandable, then, that standardization of weights and measures has always been an important function of government. When Ch'in Shih-huang-ti (259-210 B.C. ) united China for the first time, becoming its first emperor, he set about standardizing units of measure as a means of providing greater unity to the country—thus making it easier to rule. On the other hand, the Russian Empire of the late nineteenth century failed to adopt standardized systems that would have tied it more closely to the industrialized nations of Western Europe. The width of railroad tracks in Russia was different than in Western Europe, and Russia used the old Julian calendar, as opposed to the Gregorian calendar adopted throughout much of Western Europe after 1582. These and other factors made economic exchanges between Russia and Western Europe extremely difficult, and the Russian Empire remained cut off from the rapid progress of the West. Like Germany a few decades later, it became ripe for the establishment of a dictatorship—in this case under the Communists led by V. I. Lenin.

Aware of the important role that standardization of weights and measures plays in the governing of a society, the U.S. Congress in 1901 established the Bureau of Standards. Today it is known as the National Institute of Standards and Technology (NIST), a nonregulatory agency within the Commerce Department. As will be discussed at the conclusion of this essay, the NIST maintains a wide variety of standard definitions regarding mass, length, temperature and so forth, against which other devices can be calibrated.

THE VALUE OF STANDARDIZATION TO SCIENCE.

What if a nurse, rather than carefully measuring a quantity of medicine before administering it to a patient, simply gave the patient an amount that "looked right"? Or what if a pilot, instead of calculating fuel, distance, and other factors carefully before taking off from the runway, merely used a "best estimate"? Obviously, in either case, disastrous results would be likely to follow. Though neither nurses or pilots are considered scientists, both use science in their professions, and those disastrous results serve to highlight the crucial matter of using standardized measurements in science.

Standardized measurements are necessary to a chemist or any scientist because, in order for an experiment to be useful, it must be possible to duplicate the experiment. If the chemist does not know exactly how much of a certain element he or she mixed with another to form a given compound, the results of the experiment are useless. In order to share information and communicate the results of experiments, then, scientists need a standardized "vocabulary" of measures.

This "vocabulary" is the International System of Units, known as SI for its French name, Système International d'Unités. By international agreement, the worldwide scientific community adopted what came to be known as SI at the 9th General Conference on Weights and Measures in 1948. The system was refined at the 11th General Conference in 1960, and given its present name; but in fact most components of SI belong to a much older system of weights and measures developed in France during the late eighteenth century.

SI vs. the English System

The United States, as almost everyone knows, is the wealthiest and most powerful nation on Earth. On the other hand, Brunei—a tiny nation-state on the island of Java in the Indonesian archipelago—enjoys considerable oil wealth, but is hardly what anyone would describe as a super-power. Yemen, though it is located on the Arabian peninsula, does not even possess significant oil wealth, and is a poor, economically developing nation. Finally, Burma in Southeast Asia can hardly be described even as a "developing" nation: ruled by an extremely repressive military regime, it is one of the poorest nations in the world.

So what do these four have in common? They are the only nations on the planet that have failed to adopt the metric system of weights and measures. The system used in the United States is called the English system, though it should more properly be called the American system, since England itself has joined the rest of the world in "going metric." Meanwhile, Americans continue to think in terms of gallons, miles, and pounds; yet American scientists use the much more convenient metric units that are part of SI.

HOW THE ENGLISH SYSTEM WORKS (OR DOES NOT WORK).

Like methods of counting described above, most systems of measurement in premodern times were modeled on parts of the human body. The foot is an obvious example of this, while the inch originated from the measure of a king's first thumb joint. At one point, the yard was defined as the distance from the nose of England's King Henry I to the tip of his outstretched middle finger.

Obviously, these are capricious, downright absurd standards on which to base a system of measure. They involve things that change, depending for instance on whose foot is being used as a standard. Yet the English system developed in this willy-nilly fashion over the centuries; today, there are literally hundreds of units—including three types of miles, four kinds of ounces, and five kinds of tons, each with a different value.

What makes the English system particularly cumbersome, however, is its lack of convenient conversion factors. For length, there are 12 inches in a foot, but 3 feet in a yard, and 1,760 yards in a mile. Where volume is concerned, there are 16 ounces in a pound (assuming one is talking about an avoirdupois ounce), but 2,000 pounds in a ton. And, to further complicate matters, there are all sorts of other units of measure developed to address a particular property: horsepower, for instance, or the British thermal unit (Btu).

THE CONVENIENCE OF THE METRIC SYSTEM.

Great Britain, though it has long since adopted the metric system, in 1824 established the British Imperial System, aspects of which are reflected in the system still used in America. This is ironic, given the desire of early Americans to distance themselves psychologically from the empire to which their nation had once belonged. In any case, England's great worldwide influence during the nineteenth century brought about widespread adoption of the English or British system in colonies such as Australia and Canada. This acceptance had everything to do with British power and tradition, and nothing to do with convenience. A much more usable standard had actually been embraced 25 years before in a land that was then among England's greatest enemies: France.

During the period leading up to and following the French Revolution of 1789, French intellectuals believed that every aspect of existence could and should be treated in highly rational, scientific terms. Out of these ideas arose much folly, particularly during the Reign of Terror in 1793, but one of the more positive outcomes was the metric system. This system is decimal—that is, based entirely on the number 10 and powers of 10, making it easy to relate one figure to another. For instance, there are 100 centimeters in a meter and 1,000 meters in a kilometer.

PREFIXES FOR SIZES IN THE METRIC SYSTEM.

For designating smaller values of a given measure, the metric system uses principles much simpler than those of the English system, with its irregular divisions of (for instance) gallons, quarts, pints, and cups. In the metric system, one need only use a simple Greek or Latin prefix to designate that the value is multiplied by a given power of 10. In general, the prefixes for values greater than 1 are Greek, while Latin is used for those less than 1. These prefixes, along with their abbreviations and respective values, are as follows. (The symbol μ for "micro" is the Greek letter mu.)

The Most Commonly Used Prefixes in the Metric System

  • giga (G) = 10 9 (1,000,000,000)
  • mega (M) = 10 6 (1,000,000)
  • kilo (k) == 10 3 (1,000)
  • deci (d) = 10 −1 (0.1)
  • centi (c) = 10 −2 (0.01)
  • milli (m) = 10 −3 (0.001)
  • micro (μ) = 10 −6 (0.000001)
  • nano (n) = 10 −9 (0.000000001)

The use of these prefixes can be illustrated by reference to the basic metric unit of length, the meter. For long distances, a kilometer (1,000 m) is used; on the other hand, very short distances may require a centimeter (0.01 m) or a millimeter (0.001 m) and so on, down to a nanometer (0.000000001 m). Measurements of length also provide a good example of why SI includes units that are not part of the metric system, though they are convertible to metric units. Hard as it may be to believe, scientists often measure lengths even smaller than a nanometer—the width of an atom, for instance, or the wavelength of a light ray. For this purpose, they use the angstrom (Å or A), equal to 0.1 nanometers.

Calibration and SI Units

THE SEVEN BASIC SI UNITS.

The SI uses seven basic units, representing length, mass, time, temperature, amount of substance, electric current, and luminous intensity. The first four parameters are a part of everyday life, whereas the last three are of importance only to scientists. "Amount of substance" is the number of elementary particles in matter. This is measured by the mole, a unit discussed in the essay on Mass, Density, and Volume. Luminous intensity, or the brightness of a light source, is measured in candelas, while the SI unit of electric current is the ampere.

The other four basic units are the meter for length, the kilogram for mass, the second for time, and the degree Celsius for temperature. The last of these is discussed in the essay on Temperature; as for meters, kilograms, and seconds, they will be examined below in terms of the means used to define each.

CALIBRATION.

Calibration is the process of checking and correcting the performance of a measuring instrument or device against the accepted standard. America's preeminent standard for the exact time of day, for instance, is the United States Naval Observatory in Washington, D.C. Thanks to the Internet, people all over the country can easily check the exact time, and calibrate their clocks accordingly—though, of course, the resulting accuracy is subject to factors such as the speed of the Internet connection.

There are independent scientific laboratories responsible for the calibration of certain instruments ranging from clocks to torque wrenches, and from thermometers to laser-beam power analyzers. In the United States, instruments or devices with high-precision applications—that is, those used in scientific studies, or by high-tech industries—are calibrated according to standards established by the NIST.

The NIST keeps on hand definitions, as opposed to using a meter stick or other physical model. This is in accordance with the methods of calibration accepted today by scientists: rather than use a standard that might vary—for instance, the meter stick could be bent imperceptibly—unvarying standards, based on specific behaviors in nature, are used.

METERS AND KILOGRAMS.

A meter, equal to 3.281 feet, was at one time defined in terms of Earth's size. Using an imaginary line drawn from the Equator to the North Pole through Paris, this distance was divided into 10 million meters. Later, however, scientists came to the realization that Earth is subject to geological changes, and hence any measurement calibrated to the planet's size could not ultimately be reliable. Today the length of a meter is calibrated according to the amount of time it takes light to travel through that distance in a vacuum (an area of space devoid of air or other matter). The official definition of a meter, then, is the distance traveled by light in the interval of 1/299,792,458 of a second.

One kilogram is, on Earth at least, equal to 2.21 pounds; but whereas the kilogram is a unit of mass, the pound is a unit of weight, so the correspondence between the units varies depending on the gravitational field in which a pound is measured. Yet the kilogram, though it represents a much more fundamental property of the physical world than a pound, is still a somewhat arbitrary form of measure in comparison to the meter as it is defined today.

Given the desire for an unvarying standard against which to calibrate measurements, it would be helpful to find some usable but unchanging standard of mass; unfortunately, scientists have yet to locate such a standard. Therefore, the value of a kilogram is calibrated much as it was two centuries ago. The standard is a bar of platinum-iridium alloy, known as the International Prototype Kilogram, housed near Sévres in France.

SECONDS.

A second, of course, is a unit of time as familiar to non-scientifically trained Americans as it is to scientists and people schooled in the metric system. In fact, it has nothing to do with either the metric system or SI. The means of measuring time on Earth are not "metric": Earth revolves around the Sun approximately every 365.25 days, and there is no way to turn this into a multiple of 10 without creating a situation even more cumbersome than the English units of measure.

The week and the month are units based on cycles of the Moon, though they are no longer related to lunar cycles because a lunar year would soon become out-of-phase with a year based on Earth's rotation around the Sun. The continuing use of weeks and months as units of time is based on tradition—as well as the essential need of a society to divide up a year in some way.

A day, of course, is based on Earth's rotation, but the units into which the day is divided—hours, minutes, and seconds—are purely arbitrary, and likewise based on traditions of long standing. Yet scientists must have some unit of time to use as a standard, and, for this purpose, the second was chosen as the most practical. The SI definition of a second, however, is not simply one-sixtieth of a minute or anything else so strongly influenced by the variation of Earth's movement.

Instead, the scientific community chose as its standard the atomic vibration of a particular isotope of the metal cesium, cesium-133. The vibration of this atom is presumed to be unvarying, because the properties of elements—unlike the size of Earth or its movement—do not change. Today, a second is defined as the amount of time it takes for a cesium-133 atom to vibrate 9,192,631,770 times. Expressed in scientific notation, with significant figures, this is 9.19263177 · 10 9 .

WHERE TO LEARN MORE

Gardner, Robert. Science Projects About Methods of Measuring. Berkeley Heights, N.J.: Enslow Publishers, 2000.

Long, Lynette. Measurement Mania: Games and Activities That Make Math Easy and Fun. New York: Wiley, 2001.

"Measurement" (Web site). <http://www.dist214.k12.il.us/users/asanders/meas.html> (May 7, 2001).

"Measurement in Chemistry" (Web site). <http://bradley.edu/~campbell/lectnotes/149ch2/tsld001.htm> (May7, 2001).

MegaConverter 2 (Web site). <http://www.megaconverter.com> (May 7, 2001).

Patilla, Peter. Measuring. Des Plaines, IL: Heinemann Library, 2000.

Richards, Jon. Units and Measurements. Brookfield, CT: Copper Beech Books, 2000.

Sammis, Fran. Measurements. New York: Benchmark Books, 1998.

Units of Measurement (Web site). <http://www.unc.edu/~rowlett/units/> (May 7, 2001).

Wilton High School Chemistry Coach (Web site). <http://www.chemistrycoach.com> (May 7, 2001).



Also read article about Measurement from Wikipedia

User Contributions:

1
ishmam
very good writing. It would help children learn about measurement
2
Somi
How can you make real life application of measurements. For example. A long school ruler is 30cm or 12 inches. I want to know the real life application of an acre, hectare, millimeter, meter and so on. Pls help?
3
Jennifer walker
I thought standardization to science was interesting. It said if a nurse put what seemed to be enough medication instead of actually knowing what was enough could be very bad. So that's why any chemist or any scientist needs standardized vocabulary to let them know how much of something they need.
4
Sherida dawson
I learned that chemistry is used much more in the world than I thought. Also that metric is the most commonly used in the world. Also that it would be beneficial for America to switch never to metric.
5
Calvin
Standardization to science was interesting. Any chemist or scienstist or biologist needs this to make their life easier.
6
Dalton
I have learned that the units of measurements are used just about every day!
7
Cameron
I learned that the units of measurement are used on the daily and the periodic table is very helpful when experimenting in chemistry
8
Rakesh
really good writing. It will help young chaps to learn on measurements and good explanation. It would be more better if you give some real life experiences more so that the students will be able to relate it with their day-to-day life.
9
Sta.Romana Emy Lizette S
Measurement is really import to our life because without measurement we can't measure our things in our house. And also we can't measure our condiments that need in our daily life
10
Jesa Gabriel
I love reading your articles. I want to ask if how can we apply SI units in real life situations.

Comment about this article, ask questions, or add new information about this topic: