Periodic Table of Elements - How it works





Periodic Table Of Elements How It Works 3123
Photo by: Dana S. Rothstein

I NTRODUCTION TO THE P ERIODIC T ABLE

As a testament to its durability, the periodic table—created in 1869—is still in use today. Along the way, it has incorporated modifications involving subatomic properties unknown to the man who designed it, Russian chemist Dmitri Ivanovitch Mendeleev (1834-1907). Yet Mendeleev's original model, which we will discuss shortly, was essentially sound, inasmuch as it was based on the knowledge available to chemists at the time.

In 1869, the electromagnetic force fundamental to chemical interactions had only recently been identified; the modern idea of the atom was less than 70 years old; and another three decades were to elapse before scientists began uncovering the substructure of atoms that causes them to behave as they do. Despite these limitations in the knowledge available to Mendeleev, his original table was sound enough that it has never had to be discarded, but merely clarified and modified, in the years since he developed it.

The rows of the periodic table of elements are called periods, and the columns are known as groups. Each box in the table represents an element by its chemical symbol, along with its atomic number and its average atomic mass in atomic mass units. Already a great deal has been said, and a number of terms need to be explained. These explanations will require the length of this essay, beginning with a little historical background, because chemists' understanding of the periodic table—and of the elements and atoms it represents—has evolved considerably since 1869.

E LEMENTS AND A TOMS

An element is a substance that cannot be broken down chemically into another substance. An atom is the smallest particle of an element that retains all the chemical and physical properties of the element, and elements contain only one kind of atom. The scientific concepts of both elements and atoms came to us from the ancient Greeks, who had a rather erroneous notion of the element and—for their time, at least—a highly advanced idea of the atom.

Unfortunately, atomic theory died away in later centuries, while the mistaken notion of four "elements" (earth, air, fire, and water) survived

DMITRI MENDELEEV. (Bettmann/Corbis. Reproduced by permission.)
D MITRI M ENDELEEV . (
Bettmann/Corbis
. Reproduced by permission.)
virtually until the seventeenth century, an era that witnessed the birth of modern science. Yet the ancients did know of substances later classified as elements, even if they did not understand them as such. Among these were gold, tin, copper, silver, lead, and mercury. These, in fact, are such an old part of human history that their discoverers are unknown. The first individual credited with discovering an element was German chemist Hennig Brand (c. 1630-c. 1692), who discovered phosphorus in 1674.

MATURING CONCEPTS OF ATOMS, ELEMENTS, AND MOLECULES.

The work of English physicist and chemist Robert Boyle (1627-1691) greatly advanced scientific understanding of the elements. Boyle maintained that no substance was an element if it could be broken down into other substances: thus air, for instance, was not an element. Boyle's studies led to the identification of numerous elements in the years that followed, and his work influenced French chemists Antoine Lavoisier (1743-1794) and Joseph-Louis Proust (1754-1826), both of whom helped define an element in the modern sense. These men in turn influenced English chemist John Dalton (1766-1844), who reintroduced atomic theory to the language of science.

In A New System of Chemical Philosophy (1808), Dalton put forward the idea that nature is composed of tiny particles, and in so doing he adopted the Greek word atomos to describe these basic units. Drawing on Proust's law of constant composition, Dalton recognized that the structure of atoms in a particular element or compound is uniform, but maintained that compounds are made up of compound "atoms." In fact, these compound atoms are really molecules, or groups of two or more atoms bonded to one another, a distinction clarified by Italian physicist Amedeo Avogadro (1776-1856).

Dalton's and Avogadro's contemporary, Swedish chemist Jons Berzelius (1779-1848), developed a system of comparing the mass of various atoms in relation to the lightest one, hydrogen. Berzelius also introduced the system of chemical symbols—H for hydrogen, O for oxygen, and so on—in use today. Thus, by the middle of the nineteenth century, scientists understood vastly more about elements and atoms than they had just a few decades before, and the need for a system of organizing elements became increasingly clear. By mid-century, a number of chemists had attempted to create just such an organizational system, and though Mendeleev's was not the first, it proved the most useful.

M ENDELEEV C ONSTRUCTS H IS T ABLE

By the time Mendeleev constructed his periodic table in 1869, there were 63 known elements. At that point, he was working as a chemistry professor at the University of St. Petersburg, where he had become acutely aware of the need for a way of classifying the elements to make their relationships more understandable to his students. He therefore assembled a set of 63 cards, one for each element, on which he wrote a number of identifying characteristics for each.

Along with the element symbol, discussed below, he included the atomic mass for the atoms of each. In Mendeleev's time, atomic mass was understood simply to be the collective mass of a unit of atoms—a unit developed by Avogadro, known as the mole—divided by Avogadro's number, the number of atoms or molecules in a mole. With the later discovery of subatomic particles, which in turn made possible the discovery of isotopes, figures for atomic mass were clarified, as will also be discussed.

THE PERIODIC TABLE (IUPACSYSTEM)
T HE PERIODIC TABLE (IUPAC SYSTEM )

In addition, Mendeleev also included figures for specific gravity—the ratio between the density of an element and the density of water—as well as other known chemical characteristics of an element. Today, these items are typically no longer included on the periodic table, partly for considerations of space, but partly because chemists' much greater understanding of the properties of atoms makes it unnecessary to clutter the table with so much detail.

Again, however, in Mendeleev's time there was no way of knowing about these factors. As far as chemists knew in 1869, an atom was an indivisible little pellet of matter that could not be characterized by terms any more detailed than its mass and the ways it interacted with atoms of other elements. Mendeleev therefore arranged his cards in order of atomic mass, then grouped elements that showed similar chemical properties.

CONFIDENT PREDICTIONS.

As Mendeleev observed, every eighth element on the chart exhibits similar characteristics, and thus, he established columns whereby element number x was placed above element number x + 8 —for instance, helium (2) above neon (10). The patterns he observed were so regular that for any "hole" in his table, he predicted that an element to fill that space would be discovered.

Indeed, Mendeleev was so confident in the basic soundness of his organizational system that in some instances, he changed the figures for the atomic mass of certain elements because he was convinced they belonged elsewhere on the table. Later discoveries of isotopes, which in some cases affected the average atomic mass considerably, confirmed his suppositions. Likewise the undiscovered elements he named "eka-aluminum," "eka-boron," and "eka-silicon" were later identified as gallium, scandium, and germanium, respectively.