Properties of Matter - How it works

Matter and Energy

One of the characteristics of matter noted in its definition above is that it is convertible to energy. We rarely witness this conversion, though as Albert Einstein (1879-1955) showed with his Theory of Relativity, it occurs in a massive way at speeds approaching that of light.

Einstein's famous formula, E = mc 2 , means that every item possesses a quantity of energy equal to its mass multiplied by the squared speed of light. Given the fact that light travels at 186,000 mi (299,339 km) per second, the quantities of energy available from even a tiny object traveling at that speed are enormous indeed. This is the basis for both nuclear power and nuclear weaponry, each of which uses some of the smallest particles in the known universe to produce results that are both amazing and terrifying.

Even in everyday life, it is still possible to observe the conversion of mass to energy, if only on a very small scale. When a fire burns—that is, when wood experiences combustion in the presence of oxygen, and undergoes chemical changes—a tiny fraction of its mass is converted to energy. Likewise, when a stick of dynamite explodes, it too experiences chemical changes and the release of energy. The actual amount of energy released is, again, very small: for a stick of dynamite weighing 2.2 lb (1 kg), the portion of its mass that "disappears" is be equal to 6 parts out of 100 billion.

Actually, none of the matter in the fire or the dynamite blast disappears: it simply changes forms. Most of it becomes other types of matter—perhaps new compounds, and certainly new mixtures of compounds. A very small part, as we have seen, becomes energy. One of the most fundamental principles of the universe is the conservation of energy, which holds that within a system isolated from all other outside factors, the total amount of energy remains the same, though transformations of energy from one form to another take place. In this situation, some of the energy remains latent, or "in reserve" as matter, while other components of the energy are released; yet the total amount of energy remains the same.

Physical and Chemical Changes

In discussing matter—as, for instance, in the context of matter transforming into energy—one may speak in physical or chemical terms, or both. Generally speaking, physicists study physical properties and changes, while chemists are concerned with chemical processes and changes.

A physicist views matter in terms of its mass, temperature, mechanical properties (for example, elasticity); electrical conductivity; and other structural characteristics. The chemical makeup of matter, on the other hand, is of little concern to a physicist. For instance, in analyzing a fire or an explosion, the physicist is not concerned with the interactions of combustible or explosive materials and oxygen. The physicist's interest, rather, is in questions such as the amount of heat in the fire, the properties of the sound waves emitted in the explosion of the dynamite, and so on.

The changes between different states or phases of matter, as they are discussed below, are physical changes. If water boils and vaporizes as steam, it is still water; likewise if it freezes to become solid ice, nothing has changed with regard to the basic chemical structure of the H 2 O molecules that make up water. But if water reacts with another substance to form a new compound, it has undergone chemical change. Likewise, if water molecules experience electrolysis, a process in which electric current is used to decompose H 2 O into molecules of H 2 and O 2 , this is also a chemical change.

Similarly, a change from matter to energy, while it is also a physical change, typically involves some chemical or nuclear process to serve as "midwife" to that change. Yet physical and chemical changes have at least one thing in common: they can be explained in terms of behavior at the atomic or molecular level. This is true of many physical processes—and of all chemical ones.


In his highly readable Six Easy Pieces —a work that includes considerable discussion of chemistry as well as physics—the great American physicist Richard Feynman (1918-1988) asked, "If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on to the next generations of creatures, what statement would contain the most information in the fewest words?"

The answer he gave was this: "I believe it is the atomic hypothesis (or the atomic fact, or whatever you wish to call it) that all things are made of atoms—little articles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into one another. In that sentence, you will see, there is an enormous amount of information about the world, if just a little imagination and thinking are applied."

Indeed, what Feynman called the "atomic hypothesis" is one of the most important keys to understanding both physical and chemical changes. The behavior of particles at the atomic level has a defining role in the shape of the world studied by the sciences, and an awareness of this behavior makes it easier to understand physical processes, such as changes of state between solid, liquid, and gas; chemical processes, such as the formation of new compounds; and other processes, such as the conversion of matter to energy, which involve both physical and chemical changes. Only when one comprehends the atomic structure of matter is it possible to move on to the chemical elements that are the most basic materials of chemistry.


As Feynman went on to note, atoms are so tiny that if an apple were magnified to the size of Earth, the atoms in it would each be about the size of a regular apple. Clearly, atoms and other atomic particles are far too small to be glimpsed even by the most highly powered optical microscope. Yet physicists and other scientists are able to study the behavior of atoms, and by doing so, they are able to form a picture of what occurs at the atomic level.

An atom is the fundamental particle in a chemical element. The atom is not, however, the smallest particle in the universe: atoms are composed of subatomic particles, including protons, neutrons, and electrons. These are distinguished from one another in terms of electric charge: as with the north and south poles of magnets, positive and negative charges attract one another, but like charges repel. (In fact, magnetism is simply a manifestation of a larger electromagnetic force that encompasses both electricity and magnetism.)

Clustered at the center, or nucleus, of the atom are protons, which are positively charged, and neutrons, which exert no charge. Spinning around the nucleus are electrons, which exert a negative charge. The vast majority of the atom's mass is made up by the protons and neutrons, which have approximately the same mass; that of the electron is much smaller. If an electron had a mass of 1—not a unit, but simply a figure used for comparison—the mass of the proton would be 1,836, and of the neutron 1,839.

Atoms of the same element always have the same number of protons, and since this figure is unique for a given element, each element is assigned an atomic number equal to the number of protons in its nucleus. Two atoms may have the same number of protons, and thus be of the same element, yet differ in their number of neutrons. Such atoms are called isotopes.

The number of electrons is usually the same as the number of protons, and thus atoms have a neutral charge. In certain situations, however, the atom may lose or gain one or more electrons and acquire a net charge, becoming an ion. But electric charge, like energy, is conserved, and the electrons are not "lost" when an atom becomes an ion: they simply go elsewhere.

It is useful, though far from precise, to compare the interior of an atom to a planet spinning very quickly around a sun. If the nucleus were our own Sun, then the electrons spinning at the edge of the atom would be on an orbit somewhere beyond Mars: in other words, the ratio between the size of the nucleus and the furthest edge of the atom is like that between the Sun's diameter and an orbital path about 80 million miles beyond Mars.

One of many differences between an atom and a solar system, however, is the fact that the electrons are spinning around the nucleus at a relative rate of motion much, much greater than any planet is revolving around the Sun. Furthermore, what holds the atom together is not gravitational force, as in the Solar System, but electromagnetic force. A final and critical difference is the fact that electrons move in much more complex orbital patterns than the elliptical paths that planets make in their movement around the Sun.


Though an atom is the fundamental unit of matter, most of the substances people encounter in

Roger Ressmeyer/Corbis
. Reproduced by permission.)
the world are not pure elements such as oxygen or iron. They are compounds in which atoms of more than one element join—usually in molecules. All molecules are composed of more than one atom, but not necessarily of more than one element: oxygen, for instance, generally appears in the form of molecules in which two oxygen atoms are bonded. Because of this, pure oxygen is represented by the chemical symbol O 2 , as opposed to the symbol for the element oxygen, which is simply O.

One of the most well-known molecular forms in the world is water, or H 2 O, composed of two hydrogen atoms and one oxygen atom. The arrangement is extremely precise and never varies: scientists know, for instance, that the two hydrogen atoms join the oxygen atom (which is much larger than the hydrogen atoms) at an angle of 105°3′. Since the oxygen atom is much larger than the two hydrogens, its shape can be compared to a basketball with two softballs attached.

Other molecules are much more complex than those of water, and some are much, much more complex, a fact reflected in the sometimes lengthy names and complicated symbolic representations required to identify their chemical components. On the other hand, not all materials are made up of molecules: salt, for instance, is an ionic solid, as discussed below.

Quantifying Atoms and Molecules

The nucleus of an atom is about 10 −13 cm in diameter, and the diameter of the entire atom is about 10 −8 cm—about 0.0000003937 in. Obviously, special units are required for describing the size of atoms, and usually measurements are provided in terms of the angstrom, equal to 10 −10 m, or 10 −8 cm. To put this on some sort of imaginable scale, there are 10 million angstroms in a millimeter.

Measuring the spatial dimensions of an atom, however, is not as important as measuring its mass—and naturally, the mass of an atom is also almost inconceivably small. For instance, it takes about 5.0 · 10 23 carbon atoms to equal just one gram of mass. Again, the numbers boggle the mind, but the following may put this into perspective. We have already established just how tiny an angstrom is; now consider the following. If 5.0 · 10 23 angstrom lengths were laid end to end, they would stretch for a total of about 107,765 round trips from Earth to the Sun!

It is obvious, then, that an entirely different unit should be used for measuring the mass of an atom, and for this purpose, chemists and other scientists use an atom mass unit (abbreviated amu). The latter is equal to 1.66 · 10 −24 g. Even so, scientists can hardly be expected to be constantly measuring the mass of individual atoms; rather, they rely on figures determined for the average atomic mass of a particular element.

Average atomic mass figures range from 1.008 amu for hydrogen to over 250 amu for elements of very high atomic numbers. Figures for average atomic mass can be used to determine the average mass of a molecule as well, simply by combining the average atomic mass figures for each atom the molecule contains. A water molecule, for instance, has an average mass equal to the average atomic mass of hydrogen multiplied by two, and added to the average atomic mass of oxygen.


Just as using average atomic mass is much more efficient than measuring the mass of individual atoms or molecules, scientists need a useful means for comparing atoms or molecules of different substances—and for doing so in such a way that they know they are analyzing equal numbers of particles. This cannot be done in terms of mass, because the number of atoms in each sample would vary: a gram of hydrogen, for instance, would contain about 12 times as many atoms as a gram of carbon, which has an average atomic mass of 12.01 amu. What is needed, instead, is a way to designate a certain number of atoms or molecules, such that accurate comparisons are possible.

In order to do this, scientists make use of a figure known as Avogadro's number. Named after Italian physicist Amedeo Avogadro (1776-1856), it is equal to 6.022137 × 10 23 Earlier, we established the almost inconceivable scale represented by the figure 5.0 · 10 23 ; here we are confronted with a number 20% larger. But Avogadro's number, which is equal to 6,022,137 followed by 17 zeroes, is more than simply a mind-boggling series of digits.

In general terms, Avogadro's number designates the quantity of molecules (and sometimes atoms, if the substance in question is an element that, unlike oxygen, appears as single atoms) in a mole (abbreviated mol). A mole is the SI unit for "amount of substance," and is defined precisely as the number of carbon atoms in 12.01 g of carbon. It is here that the value of Avogadro's number becomes clear: as noted, carbon has an average atomic mass of 12.01 amu, and multiplication of the average atomic mass by Avogadro's number yields a figure in grams equal to the value of the average atomic mass in atomic mass units.


By comparison, a mole of helium has a molar mass of 4.003 g (0.01 lb) The molar mass of iron (that is, the mass of 1 mole of iron) is 55.85 g (0.12 lb) Note that there is not a huge ratio of difference between the molar mass of iron and that of helium: iron has a molar mass about 14 times greater. This, of course, seems very small in light of the observable differences between iron and helium: after all, who ever heard of a balloon filled with iron, or a skyscraper with helium girders?

The very striking differences between iron and helium, clearly, must come from something other than the molar mass differential between them. Of course, a mole of iron contains the same number of atoms as a mole of helium, but this says nothing about the relative density of the two substances. In terms of volume—that is, the amount of space that something occupies—the difference is much more striking: the volume of a mole of helium is about 43,000 times as large as that of a mole of iron.

What this tells us is that the densities of iron and helium—the amount of mass per unit of volume—are very different. This difference in density is discussed in the essay on Mass, Density, and Volume; here the focus is on a larger judgment that can be formed by comparing the two densities. Helium, of course, is almost always in the form of a gas: to change it to a solid requires a temperature near absolute zero. And iron is a solid, meaning that it only turns into a liquid at extraordinarily high temperatures. These differences in overall structure can, in turn, be attributed to the relative motion, attraction, and energy of the molecules in each.

Molecular Attraction and Motion

At the molecular level, every item of matter in the world is in motion, and the rate of that motion is a function of the attraction between molecules. Furthermore, the rate at which molecules move in relation to one another determines phase of matter—that is, whether a particular item can be described as solid, liquid, or gas. The movement of molecules generates kinetic energy, or the energy of movement, which is manifested as thermal energy—what people call "heat" in ordinary language. (The difference between thermal energy and heat is explained in the essay on Temperature and Heat.) In fact, thermal energy is the result of molecules' motion relative to one another: the faster they move, the greater the kinetic energy, and the greater the "heat."

When the molecules in a material move slowly—merely vibrating in place—they exert a strong attraction toward one another, and the material is called a solid. Molecules of liquid, by contrast, move at moderate speeds and exert a moderate attraction. A material substance whose molecules move at high speeds, and therefore exert little or no attraction, is known as a gas. In short, the weaker the attraction, the greater the rate of relative motion—and the greater the amount of thermal energy the object contains.

User Contributions:

Comment about this article, ask questions, or add new information about this topic: