Actinides - How it works



The Transition Metals

Why are actinides and lanthanides set apart from the periodic table? This can best be explained by reference to the transition metals and their characteristics. Actinides and lanthanides are referred to as inner transition metals, because, although they belong to this larger family, they are usually considered separately—rather like grown children who have married and started families of their own.

The qualities that distinguish the transition metals from the representative or main-group elements on the periodic table are explained in depth within the Transition Metals essay. The reader is encouraged to consult that essay, as well as the one on Families of Elements, which further places the transition metals within the larger context of the periodic table. Here these specifics will be discussed only briefly.

ORBITAL PATTERNS OF THE TRANSITION METALS.

The transition metals are distinguished by their configuration of valence electrons, or the outer-shell electrons involved in chemical bonding. Together with the core electrons, which are at lower energy levels, valence electrons move in areas of probability referred to as orbitals. The pattern of orbitals is determined by the principal energy level of the atom, which indicates a distance that an electron may move away from the nucleus.

Each principal energy level is divided into sublevels corresponding to the number n of the principal energy level. The actinides, which would be on Period 7 if they were included on the periodic table with the other transition metals, have seven principal energy levels. (Note that period number and principal energy level number are the same.) In the seventh principal energy level, there are seven possible sublevels.

The higher the energy level, the larger the number of possible orbital patterns, and the more complex the patterns. Orbital patterns loosely define the overall shape of the electron cloud, but this does not necessarily define the paths along which the electrons move. Rather, it means that if you could take millions of photographs of the electron during a period of a few seconds, the resulting blur of images would describe more or less the shape of a specified orbital.

The four basic types of orbital patterns are discussed in the Transition Metals essay, and will not be presented in any detail here. It is important only to know that, unlike the representative elements, transition metals fill the sublevel corresponding to the d orbitals. In addition, they are the only elements that have valence electrons on two different principal energy levels.

LANTHANIDES AND ACTINIDES.

The lanthanides and actinides are further set apart even from the transition metals, due to the fact that these elements also fill the highly complex f orbitals. Thus these two families are listed by themselves. In most versions of the periodic table, lanthanum (57) is followed by hafnium (72) in the transition metals section of the chart; similarly, actinium (89) is followed by rutherfordium (104). The "missing" metals—lanthanides and actinides, respectively—are shown at the bottom of the chart.

The lanthanides can be defined as those metals that fill the 4 f orbital. However, because lanthanum (which does not fill the 4 f orbital) exhibits similar properties, it is usually included with the lanthanides. Likewise the actinides can be defined as those metals that fill the 5 f orbital; but again, because actinium exhibits similar properties, it is usually included with the actinides.

Isotopes

One of the distinguishing factors in the actinide family is its great number of radioactive isotopes. Two atoms may have the same number of protons, and thus be of the same element, yet differ in their number of neutrons—neutrally charged patterns alongside the protons at the nucleus. Such atoms are called isotopes, atoms of the same element having different masses.

Isotopes are represented symbolically in one of several ways. For instance, there is this format: where S is the chemical symbol of the element, a is the atomic number (the number of protons in its nucleus), and m the mass number—the sum of protons and neutrons. For the isotope known as uranium-238, for instance, this is shown as.

Because the atomic number of any element is established, however, isotopes are usually represented simply with the mass number thus: 238 U. They may also be designated with a subscript notation indicating the number of neutrons, so that this information can be obtained at a glance without it being necessary to do the arithmetic. For the uranium isotope shown here, this is written as

Radioactivity

The term radioactivity describes a phenomenon whereby certain materials are subject to a form of decay brought about by the emission of high-energy particles, or radiation.

Types of particles emitted in radiation include:

  • Alpha particles, or helium nuclei;
  • Beta particles—either an electron or a subatomic particle called a positron;
  • Gamma rays or other very high-energy electromagnetic waves.

Isotopes are either stable or unstable, with the unstable variety, known as radioisotopes, being subject to radioactive decay. In this context, "decay" does not mean "rot"; rather, a radioisotope decays by turning into another isotope. By continuing to emit particles, the isotope of one element may even turn into the isotope of another element.

Eventually the radioisotope becomes a stable isotope, one that is not subject to radioactive decay. This is a process that may take seconds, minutes, hours, days, years—and sometimes millions or even billions of years. The rate of decay is gauged by the half-life of a radioisotope sample: in other words, the amount of time it takes for half the nuclei (plural of nucleus) in the sample to become stable.

Actinides decay by a process that begins with what is known as K-capture, in which an electron of a radioactive atom is captured by the nucleus and taken into it. This is followed by the splitting, or fission, of the atom's nucleus. This fission produces enormous amounts of energy, as well as the release of two or more neutrons, which may in turn bring about further K-capture. This is called a chain reaction.

GLENN T. SEABORG HOLDS A SAMPLE CONTAINING ARTIFICIAL ELEMENTS BETWEEN 94 AND 102 ON THE PERIODIC TABLE. (Roger Ressmeyer/Corbis. Reproduced by permission.)
G LENN T. S EABORG HOLDS A SAMPLE CONTAINING ARTIFICIAL ELEMENTS BETWEEN 94 AND 102 ON THE PERIODIC TABLE .
(Roger Ressmeyer/Corbis
. Reproduced by permission.)

Also read article about Actinides from Wikipedia

User Contributions:

Comment about this article, ask questions, or add new information about this topic: