Carbon - How it works





T HE B ASICS OF C ARBON

Carbon's name comes from the Latin word carbo, or charcoal—which, indeed, is almost pure carbon. Its chemical symbol is C, and it has an atomic number of 6, meaning that there are six protons in its nucleus. Its two stable isotopes are 12 C, which constitutes 98.9% of all carbon found in nature, and 13 C, which accounts for the other 1.1%.

The mass of the 12 C atom is the basis for the atomic mass unit (amu), by which mass figures for all other elements are measured: the amu is defined as exactly 1/12 the mass of a single 12 C atom. The difference in mass between 12 C and 13 C, which is heavier because of its extra neutron, account for the fact that the atomic mass of carbon is 12.01 amu: were it not for the small quantities of 13 C present in a sample of carbon, the mass would be exactly 12.00 amu.

WHERE CARBON IS FOUND.

Carbon makes up only a small portion of the known elemental mass in Earth's crust, oceans, and atmosphere—just 0.08%, or 1/1250 of the whole—yet it is the fourteenth most abundant element on the planet. In the human body, carbon is second only to oxygen in abundance, and accounts for 18% of the body's mass. Thus if a person weighs 100 lb (45.3 kg), she is carrying around 18 lb (8.2 kg) of carbon—the same material from which diamonds are made!

Present in the inorganic rocks of the ground and in the living creatures above it, carbon is everywhere. Combined with other elements, it forms carbonates, most notably calcium carbonate (CaCO 3 ), which appears in the form of limestone, marble, and chalk. In combination with hydrogen, it creates hydrocarbons, present in deposits of fossil fuels: natural gas, petroleum, and coal. In the environment, carbon—in the form of carbon dioxide (CO 2 )—is taken in by plants, which undergo the process of photosynthesis and release oxygen to animals. Animals breathe in oxygen and release carbon dioxide to the atmosphere.

C ARBON AND B ONDING

Located in Group 4 of the periodic table of elements (Group 14 in the IUPAC system), carbon has a valence electron configuration of 2 s 2 2 p 2 ; likewise, all the members of Group 4—sometimes known as the "carbon family"—have configurations of n s 2 n p 2 , where n is the number of the period or row that the element occupies on the table.

There are two elements noted for their ability to form long strings of atoms and seemingly endless varieties of molecules: one is carbon, and the other is silicon, directly below it on the periodic table. Silicon, found in virtually all types of rocks except the calcium carbonates (mentioned above), is to the inorganic world what carbon is to the organic. Yet silicon atoms are about one and a half times as large as those of carbon; thus not even silicon can compete with carbon's ability to form a seemingly limitless array of molecules in various shapes and sizes, and having various chemical properties.

BASICS OF CHEMICAL BONDING.

Carbon is further distinguished by its high value of electronegativity, the relative ability of an atom to attract valence electrons. Electronegativity increases with an increase in group number, and decreases with an increase in period number. In other words, the elements with the highest electronegativity values lie in the upper right-hand corner of the periodic table.

Actually, the previous statement requires one significant qualification: the extreme right-hand side of the periodic table is occupied by elements with negligible electronegativity values. These are the noble gases, which have eight valence electrons each. Eight, as it turns out, is the "magic number" for chemical bonding: most elements follow what is known as the octet rule, meaning that when one element bonds to another, the two atoms have eight valence electrons.

If the two atoms have an electric charge and thus are ions, they form strong ionic bonds. Ionic bonding occurs when a metal bonds with a nonmetal. The other principal type of bond is a covalent bond, in which two uncharged atoms share eight valence electrons. If the electronegativity values of the two elements involved are equal, they share the electrons equally; but if one element has a higher electronegativity value, the electrons will be more drawn to that element.

ELECTRONEGATIVITY OF CARBON.

To return to electronegativity and the periodic table, let us ignore the noble gases, which are the chemical equivalent of snobs. (Hence the term "noble," meaning that they are set apart.) To the left of the noble gases are the halogens, a wildly gregarious bunch—none more so than the element that occupies the top of the column, fluorine. With an electronegativity value of 4.0, fluorine is the most reactive of all elements, and the only one capable of bonding even to a few of the noble gases.

So why is fluorine—capable of forming multitudinous bonds—not as chemically significant as carbon? There are a number of answers, but a simple one is this: because fluorine is too strong, and tends to "overwhelm" other elements, precluding the possibility of forming long chains, it is less chemically significant than carbon. Carbon, on the other hand, has an electronegativity value of 2.5, which places it well behind fluorine. Yet it is still at sixth place (in a tie with iodine and sulfur) on the periodic table, behind only fluorine; oxygen (3.5); nitrogen and chlorine (3.0); and bromine (2.8). In addition, with four valence electrons, carbon is ideally suited to find other elements (or other carbon atoms) for forming covalent bonds according to the octet rule.

MULTIPLE BONDS.

Normally, an element does not necessarily have the ability to bond with as many other elements as it has valence electrons, but carbon—with its four valence electrons—happens to be tetravalent, or capable of bonding to four other atoms at once. Additionally, carbon is capable of forming not only a single bond, but also a double bond, or even a triple bond, with other elements.

Suppose a carbon atom bonds to two oxygen atoms to form carbon dioxide. Let us imagine these three atoms side by side, with the oxygen in the middle. (This, in fact, is how these bonds are depicted in the Couper and Lewis systems of chemical symbolism, discussed in the Chemical Bonding essay.) We know that the carbon has four valence electrons, that the oxygens have six, and that the goal is for each atom to have eight valence electrons—some of which it will share covalently.

Two of the valence electrons from the carbon bond with two valence electrons each from the oxygen atoms on either side. This means that the carbon is doubly bonded to each of the oxygen atoms. Therefore, the two oxygens each have four other unbonded valence electrons, which might bond to another atom. It is theoretically possible, also, for the carbon to form a triple bond with one of the oxygens by sharing three of its valence electrons. It would then have one electron free to share with the other oxygen.