CONSERVATION LAWS



The term "conservation laws" might sound at first like a body of legal statutes geared toward protecting the environment. In physics, however, the term refers to a set of principles describing certain aspects of the physical universe that are preserved throughout any number of reactions and interactions. Among the properties conserved are energy, linear momentum, angular momentum, and electrical charge. (Mass, too, is conserved, though only in situations well below the speed of light.) The conservation of these properties can be illustrated by examples as diverse as dropping a ball (energy); the motion of a skater spinning on ice (angular momentum); and the recoil of a rifle (linear momentum).

The conservation laws describe physical properties that remain constant throughout the various processes that occur in the physical world. In physics, "to conserve" something means "to result in no net loss of" that particular component. For each such component, the input is the same as the output: if one puts a certain amount of energy into a physical system, the energy that results from that system will be the same as the energy put into it.

The energy may, however, change forms. In addition, the operations of the conservation laws are—on Earth, at least—usually affected by a number of other forces, such as gravity, friction, and air resistance. The effects of these forces, combined with the changes in form that take place within a given conserved property, sometimes make it difficult to perceive the working of the conservation laws. It was stated above that the resulting energy of a physical system will be the same as the energy that was introduced to it. Note, however, that the usable energy output of a system will not be equal to the energy input. This is simply impossible, due to the factors mentioned above—particularly friction.

When one puts gasoline into a motor, for instance, the energy that the motor puts out will never be as great as the energy contained in the gasoline, because part of the input energy is expended in the operation of the motor itself. Similarly, the angular momentum of a skater on ice will ultimately be dissipated by the resistant force of friction, just as that of a Frisbee thrown through the air is opposed both by gravity and air resistance—itself a specific form of friction.

In each of these cases, however, the property is still conserved, even if it does not seem so to the unaided senses of the observer. Because the motor has a usable energy output less than the input, it seems as though energy has been lost. In fact, however, the energy has only changed forms, and some of it has been diverted to areas other than the desired output. (Both the noise and the heat of the motor, for instance, represent uses of energy that are typically considered undesirable.) Thus, upon closer study of the motor—itself an example of a system—it becomes clear that the resulting energy, if not the desired usable output, is the same as the energy input.

As for the angular momentum examples in which friction, or air resistance, plays a part, here too (despite all apparent evidence to the contrary) the property is conserved. This is easier to understand if one imagines an object spinning in outer space, free from the opposing force of friction. Thanks to the conservation of angular

AS THIS HUNTER FIRES HIS RIFLE, THE RIFLE PRODUCES A BACKWARD "KICK" AGAINST HIS SHOULDER. THIS KICK, WITH A VELOCITY IN THE OPPOSITE DIRECTION OF THE BULLET'S TRAJECTORY, HAS A MOMENTUM EXACTLY THE SAME AS THAT OF THE BULLET ITSELF: HENCE MOMENTUM IS CONSERVED. (Photograph by Tony Arruza/Corbis. Reproduced by permission.)
A S THIS HUNTER FIRES HIS RIFLE , THE RIFLE PRODUCES A BACKWARD " KICK " AGAINST HIS SHOULDER . T HIS KICK , WITH A VELOCITY IN THE OPPOSITE DIRECTION OF THE BULLET ' S TRAJECTORY , HAS A MOMENTUM EXACTLY THE SAME AS THAT OF THE BULLET ITSELF : HENCE MOMENTUM IS CONSERVED . (Photograph by
Tony Arruza/Corbis
. Reproduced by permission.)
momentum, an object set into rotation in space will continue to spin indefinitely. Thus, if an astronaut in the 1960s, on a spacewalk from his capsule, had set a screwdriver spinning in the emptiness of the exosphere, the screwdriver would still be spinning today!

Also read article about Conservation Laws from Wikipedia

User Contributions:

1
w
More examples of real life stuff please. otherwise pretty good. nice job. thanks

Comment about this article, ask questions, or add new information about this topic: