Fluid Mechanics - Real-life applications



Fluid Mechanics Real Life Applications 2938
Photo by: rare

Bernoulli's Principle in Action

As fluid moves from a wider pipe to a narrower one, the volume of the fluid that moves a given distance in a given time period does not change. But since the width of the narrower pipe is smaller, the fluid must move faster (that is, with greater dynamic pressure) in order to move the same amount of fluid the same distance in the same amount of time. Observe the behavior of a river: in a wide, unconstricted region, it flows slowly, but if its flow is narrowed by canyon walls, it speeds up dramatically.

Bernoulli's principle ultimately became the basis for the airfoil, the design of an airplane's wing when seen from the end. An airfoil is shaped like an asymmetrical teardrop laid on its side, with the "fat" end toward the airflow. As air hits the front of the airfoil, the airstream divides, part of it passing over the wing and part passing under. The upper surface of the airfoil is curved, however, whereas the lower surface is much straighter.

As a result, the air flowing over the top has a greater distance to cover than the air flowing under the wing. Since fluids have a tendency to compensate for all objects with which they come into contact, the air at the top will flow faster to meet the other portion of the airstream, the air flowing past the bottom of the wing, when both reach the rear end of the airfoil. Faster airflow, as demonstrated by Bernoulli, indicates lower pressure, meaning that the pressure on the bottom of the wing keeps the airplane aloft.

CREATING A DRAFT.

Among the most famous applications of Bernoulli's principle is its use in aerodynamics, and this is discussed in the context of aerodynamics itself elsewhere in this book. Likewise, a number of other applications of Bernoulli's principle are examined in an essay devoted to that topic. Bernoulli's principle, for instance, explains why a shower curtain tends to billow inward when the water is turned on; in addition, it shows why an open window and door together create a draft.

Suppose one is in a hotel room where the heat is on too high, and there is no way to adjust the thermostat. Outside, however, the air is cold, and thus, by opening a window, one can presumably cool down the room. But if one opens the window without opening the front door of the room, there will be little temperature change. The only way to cool off will be by standing next to the window: elsewhere in the room, the air will be every bit as stuffy as before. But if the door leading to the hotel hallway is opened, a nice cool breeze will blow through the room. Why?

With the door closed, the room constitutes an area of relatively high pressure compared to the pressure of the air outside the window. Because air is a fluid, it will tend to flow into the room, but once the pressure inside reaches a certain point, it will prevent additional air from entering. The tendency of fluids is to move from high-pressure to low-pressure areas, not the other way around. As soon as the door is opened, the relatively high-pressure air of the room flows into the relatively low-pressure area of the hallway. As a result, the air pressure in the room is reduced, and the air from outside can now enter. Soon a wind will begin to blow through the room.

A WIND TUNNEL.

The above scenario of wind flowing through a room describes a rudimentary wind tunnel. A wind tunnel is a chamber built for the purpose of examining the characteristics of airflow in contact with solid objects, such as aircraft and automobiles. The wind tunnel represents a safe and judicious use of the properties of fluid mechanics. Its purpose is to test the interaction of airflow and solids in relative motion: in other words, either the aircraft has to be moving against the airflow, as it does in flight, or the airflow can be moving against a stationary aircraft. The first of these choices, of course, poses a number of dangers; on the other hand, there is little danger in exposing a stationary craft to winds at speeds simulating that of the aircraft in flight.

The first wind tunnel was built in England in 1871, and years later, aircraft pioneers Orville (1871-1948) and Wilbur (1867-1912) Wright used a wind tunnel to improve their planes. By the late 1930s, the U.S. National Advisory Committee for Aeronautics (NACA) was building wind tunnels capable of creating speeds equal to 300 MPH (480 km/h); but wind tunnels built after World War II made these look primitive. With the development of jet-powered flight, it became necessary to build wind tunnels capable of simulating winds at the speed of sound—760 MPH (340 m/s). By the 1950s, wind tunnels were being used to simulate hypersonic speeds—that is, speeds of Mach 5 (five times the speed of sound) and above. Researchers today use helium to create wind blasts at speeds up to Mach 50.

Fluid Mechanics for Performing Work

HYDRAULIC PRESSES.

Though applications of Bernoulli's principle are among the most dramatic examples of fluid mechanics in operation, the everyday world is filled with instances of other ideas at work. Pascal's principle, for instance, can be seen in the operation of any number of machines that represent variations on the idea of a hydraulic press. Among these is the hydraulic jack used to raise a car off the floor of an auto mechanic's shop.

Beneath the floor of the shop is a chamber containing a quantity of fluid, and at either end of the chamber are two large cylinders side by side. Each cylinder holds a piston, and valves control flow between the two cylinders through the channel of fluid that connects them. In accordance with Pascal's principle, when one applies force by pressing down the piston in one cylinder (the input cylinder), this yields a uniform pressure that causes output in the second cylinder, pushing up a piston that raises the car.

Another example of a hydraulic press is the hydraulic ram, which can be found in machines ranging from bulldozers to the hydraulic lifts used by firefighters and utility workers to reach heights. In a hydraulic ram, however, the characteristics of the input and output cylinders are reversed from those of a car jack. For the car jack, the input cylinder is long and narrow, while the output cylinder is wide and short. This is because the purpose of a car jack is to raise a heavy object through a relatively short vertical range of movement—just high enough so that the mechanic can stand comfortably underneath the car.

In the hydraulic ram, the input or master cylinder is short and squat, while the output or slave cylinder is tall and narrow. This is because the hydraulic ram, in contrast to the car jack, carries a much lighter cargo (usually just one person) through a much greater vertical range—for instance, to the top of a tree or building.

PUMPS.

A pump is a device made for moving fluid, and it does so by utilizing a pressure difference, causing the fluid to move from an area of higher pressure to one of lower pressure. Its operation is based on aspects both of Pascal's and Bernoulli's principles—though, of course, humans were using pumps thousands of years before either man was born.

A siphon hose used to draw gas from a car's fuel tank is a very simple pump. Sucking on one end of the hose creates an area of low pressure compared to the relatively high-pressure area of the gas tank. Eventually, the gasoline will come out of the low-pressure end of the hose.

The piston pump, slightly more complex, consists of a vertical cylinder along which a piston rises and falls. Near the bottom of the cylinder are two valves, an inlet valve through which fluid flows into the cylinder, and an outlet valve through which fluid flows out. As the piston moves upward, the inlet valve opens and allows fluid to enter the cylinder. On the downstroke, the inlet valve closes while the outlet valve opens, and the pressure provided by the piston forces the fluid through the outlet valve.

One of the most obvious applications of the piston pump is in the engine of an automobile. In this case, of course, the fluid being pumped is gasoline, which pushes the pistons up and down

PUMPS FOR DRAWING USABLE WATER FROM THE GROUND ARE UNDOUBTEDLY THE OLDEST PUMPS KNOWN. (Photograph by Richard Cummins/Corbis. Reproduced by permission.)
P UMPS FOR DRAWING USABLE WATER FROM THE GROUND ARE UNDOUBTEDLY THE OLDEST PUMPS KNOWN . (Photograph by
Richard Cummins/Corbis
. Reproduced by permission.)
by providing a series of controlled explosions created by the spark plug's ignition of the gas. In another variety of piston pump—the kind used to inflate a basketball or a bicycle tire—air is the fluid being pumped. Then there is a pump for water. Pumps for drawing usable water from the ground are undoubtedly the oldest known variety, but there are also pumps designed to remove water from areas where it is undesirable; for example, a bilge pump, for removing water from a boat, or the sump pump used to pump flood water out of a basement.

FLUID POWER.

For several thousand years, humans have used fluids—in particular water—to power a number of devices. One of the great engineering achievements of ancient times was the development of the waterwheel, which included a series of buckets along the rim that made it possible to raise water from the river below and disperse it to other points. By about 70

B.C. , Roman engineers recognized that they could use the power of water itself to turn wheels and grind grain. Thus, the waterwheel became one of the first mechanisms in which an inanimate source (as opposed to the effort of humans or animals) created power.

The water clock, too, was another ingenious use of water developed by the ancients. It did not use water for power; rather, it relied on gravity—a concept only dimly understood by ancient peoples—to move water from one chamber of theclock to another, thus, marking a specific interval of time. The earliest clocks were sundials, which were effective for measuring time, provided the Sun was shining, but which were less useful form easuring periods shorter than an hour. Hence, the development of the hourglass, which used sand, a solid that in larger quantities exhibits the behavior of a fluid. Then, in about 270 B.C. , Ctesibius of Alexandria (fl. c. 270-250 B.C. ) used gearwheel technology to devise a constant-flow water clock called a "clepsydra." Use of water clocks prevailed for more than a thousand years, until the advent of the first mechanical clocks.

During the medieval period, fluids provided power to windmills and water mills, and at the dawn of the Industrial Age, engineers began applying fluid principles to a number of sophisticated machines. Among these was the turbine, a machine that converts the kinetic energy (the energy of movement) in fluids to useable mechanical energy by passing the stream of fluid through a series of fixed and moving fans or blades. A common house fan is an example of a turbine in reverse: the fan adds energy to the passing fluid (air), whereas a turbine extracts energy from fluids such as air and water.

The turbine was developed in the mid-eighteenth century, and later it was applied to the extraction of power from hydroelectric dams, the first of which was constructed in 1894. Today, hydroelectric dams provide electric power to millions of homes around the world. Among the most dramatic examples of fluid mechanics in action, hydroelectric dams are vast in size and equally impressive in the power they can generate using a completely renewable resource: water.

A hydroelectric dam forms a huge steel-and-concrete curtain that holds back millions of tons of water from a river or other body. The water nearest the top—the "head" of the dam—has enormous potential energy, or the energy that an object possesses by virtue of its position. Hydroelectric power is created by allowing controlled streams of this water to flow downward, gathering kinetic energy that is then transferred to powering turbines, which in turn generate electric power.

WHERE TO LEARN MORE

Aerodynamics for Students (Web site). <http://www.ae.su.oz.au/aero/contents.html> (April 8, 2001).

Beiser, Arthur. Physics, 5th ed. Reading, MA: Addison-Wesley, 1991.

Chahrour, Janet. Flash! Bang! Pop! Fizz!: Exciting Science for Curious Minds. Illustrated by Ann Humphrey Williams. Hauppauge, N.Y.: Barron's, 2000.

"Educational Fluid Mechanics Sites." Virginia Institute of Technology (Web site). <http://www.eng.vt.edu/fluids/links/edulinks.htm> (April 8, 2001).

Fleisher, Paul. Liquids and Gases: Principles of Fluid Mechanics. Minneapolis, MN: Lerner Publications, 2002.

Institute of Fluid Mechanics (Web site). <http://www.ts.go.dlr.de> (April 8, 2001).

K8AIT Principles of Aeronautics Advanced Text (web site). <http://wings.ucdavis.edu/Book/advanced.html> (February 19, 2001).

Macaulay, David. The New Way Things Work. Boston: Houghton Mifflin, 1998.

Sobey, Edwin J. C. Wacky Water Fun with Science: Science You Can Float, Sink, Squirt, and Sail. Illustrated by Bill Burg. New York: McGraw-Hill, 2000.

Wood, Robert W. Mechanics Fundamentals. Illustrated by Bill Wright. Philadelphia: Chelsea House, 1997.



Also read article about Fluid Mechanics from Wikipedia

User Contributions:

1
BONGANI
DOES THE VELOCITY OF WATER DEPEND ON THE DIAMETER OF THE PIPE
Viscosity is one of the topic which we have learned in the fluid mechanics , the extra soap in the dishes become slippery.this was because the soap was acting as a lubricant for the dish.the viscosity of soap lessened the effect of the shear forces on the plate.this is what causes the plate to slip out of your hand.

Comment about this article, ask questions, or add new information about this topic: