Laws of Motion - How it works



Laws of Man vs. Laws of Nature

These, of course, are not "laws" in the sense that people normally understand that term. Human laws, such as injunctions against stealing or parking in a fire lane, are prescriptive: they state how the world should be. Behind the prescriptive statements of civic law, backing them up and giving them impact, is a mechanism—police, courts, and penalties—for ensuring that citizens obey.

A scientific law operates in exactly the opposite fashion. Here the mechanism for ensuring that nature "obeys" the law comes first, and the "law" itself is merely a descriptive statement concerning evident behavior. With human or civic law, it is clearly possible to disobey: hence, the justice system exists to discourage disobedience. In the case of scientific law, disobedience is clearly impossible—and if it were not, the law would have to be amended.

This is not to say, however, that scientific laws extend beyond their own narrowly defined limits. On Earth, the intrusion of outside forces—most notably friction—prevents objects from behaving perfectly according to the first law of motion. The common-sense definition of friction calls to mind, for instance, the action that a match makes as it is being struck; in its broader scientific meaning, however, friction can be defined as any force that resists relative motion between two bodies in contact.

THE CARGO BAY OF THE SPACE SHUTTLE DISCOVERY, SHOWN JUST AFTER RELEASING A SATELLITE. ONCE RELEASED INTO THE FRICTIONLESS VACUUM AROUND EARTH, THE SATELLITE WILL MOVE INDEFINITELY AROUND EARTH WITHOUT NEED FOR THE MOTIVE POWER OF AN ENGINE. THE PLANET'S GRAVITY KEEPS IT AT A FIXED HEIGHT, AND AT THAT HEIGHT, IT COULD THEORETICALLY CIRCLE EARTH FOREVER. (Corbis. Reproduced by permission.)
T HE CARGO BAY OF THE SPACE SHUTTLE D ISCOVERY, SHOWN JUST AFTER RELEASING A SATELLITE . O NCE RELEASED INTO THE FRICTIONLESS VACUUM AROUND E ARTH, THE SATELLITE WILL MOVE INDEFINITELY AROUND E ARTH WITHOUT NEED FOR THE MOTIVE POWER OF AN ENGINE . T HE PLANET ' S GRAVITY KEEPS IT AT A FIXED HEIGHT, AND AT THAT HEIGHT, IT COULD THEORETICALLY CIRCLE E ARTH FOREVER .
(Corbis
. Reproduced by permission.)

The operations of physical forces on Earth are continually subject to friction, and this includes not only dry bodies, but liquids, for instance, which are subject to viscosity, or internal friction. Air itself is subject to viscosity, which prevents objects from behaving perfectly in accordance with the first law of motion. Other forces, most notably that of gravity, also come into play to stop objects from moving endlessly once they have been set in motion.

The vacuum of outer space presents scientists with the most perfect natural laboratory for testing the first law of motion: in theory, if they were to send a spacecraft beyond Earth's orbital radius, it would continue travelling indefinitely. But even this craft would likely run into another object, such as a planet, and would then be drawn into its orbit. In such a case, however, it can be said that outside forces have acted upon it, and thus the first law of motion stands.

The orbit of a satellite around Earth illustrates both the truth of the first law, as well as the forces that limit it. To break the force of gravity, a powered spacecraft has to propel the satellite into the exosphere. Yet once it has reached the frictionless vacuum, the satellite will move indefinitely around Earth without need for the motive power of an engine—it will get a "free ride," thanks to the first law of motion. Unlike the hypothetical spacecraft described above, however, it will not go spinning into space, because it is still too close to Earth. The planet's gravity keeps it at a fixed height, and at that height, it could theoretically circle Earth forever.

The first law of motion deserves such particular notice, not simply because it is the first law. Nonetheless, it is first for a reason, because it establishes a framework for describing the behavior of an object in motion. The second law identifies a means of determining the force necessary to move an object, or to stop it from moving, and the third law provides a picture of what happens when two objects exert force on one another.

The first law warrants special attention because of misunderstandings concerning it, which spawned a debate that lasted nearly twenty centuries. Aristotle (384-322 B.C. ) was the first scientist to address seriously what is now known as the first law of motion, though in fact, that term would not be coined until about two thousand years after his death. As its title suggests, his Physics was a seminal work, a book in which Aristotle attempted to give form to, and thus define the territory of, studies regarding the operation of physical processes. Despite the great philosopher's many achievements, however, Physics is a highly flawed work, particularly with regard to what became known as his theory of impetus—that is, the phenomena addressed in the first law of motion.

Aristotle's Mistake

According to Aristotle, a moving object requires a continual application of force to keep it moving: once that force is no longer applied, it ceases to move. You might object that, when a ball is in flight, the force necessary to move it has already been applied: a person has thrown the ball, and it is now on a path that will eventually be stopped by the force of gravity. Aristotle, however, would have maintained that the air itself acts as a force to keep the ball in flight, and that when the ball drops—of course he had no concept of "gravity" as such—it is because the force of the air on the ball is no longer in effect.

These notions might seem patently absurd to the modern mind, but they went virtually unchallenged for a thousand years. Then in the sixth century A.D. , the Byzantine philosopher Johannes Philoponus (c. 490-570) wrote a critique of Physics. In what sounds very much like a precursor to the first law of motion, Philoponus held that a body will keep moving in the absence of friction or opposition.

He further maintained that velocity is proportional to the positive difference between force and resistance—in other words, that the force propelling an object must be greater than the resistance. As long as force exceeds resistance, Philoponus held, a body will remain in motion. This in fact is true: if you want to push a refrigerator across a carpeted floor, you have to exert enough force not only to push the refrigerator, but also to overcome the friction from the floor itself.

The Arab philosophers Ibn Sina (Avicenna; 980-1037) and Ibn Bâjja (Avempace; fl. c. 1100) defended Philoponus's position, and the French scholar Peter John Olivi (1248-1298) became the first Western thinker to critique Aristotle's statements on impetus. Real progress on the subject, however, did not resume until the time of Jean Buridan (1300-1358), a French physicist who went much further than Philoponus had eight centuries earlier.

In his writing, Buridan offered an amazingly accurate analysis of impetus that prefigured all three laws of motion. It was Buridan's position that one object imparts to another a certain amount of power, in proportion to its velocity and mass, that causes the second object to move a certain distance. This, as will be shown below, was amazingly close to actual fact. He was also correct in stating that the weight of an object may increase or decrease its speed, depending on other circumstances, and that air resistance slows an object in motion.

The true breakthrough in understanding the laws of motion, however, came as the result of work done by three extraordinary men whose lives stretched across nearly 250 years. First came Nicolaus Copernicus (1473-1543), who advanced what was then a heretical notion: that Earth, rather than being the center of the universe, revolved around the Sun along with the other planets. Copernicus made his case purely in terms of astronomy, however, with no direct reference to physics.

Galileo's Challenge: The Copernican Model

Galileo Galilei (1564-1642) likewise embraced a heliocentric (Sun-centered) model of the universe—a position the Church forced him to renounce publicly on pain of death. As a result of his censure, Galileo realized that in order to prove the Copernican model, it would be necessary to show why the planets remain in motion as they do. In explaining this, he coined the term inertia to describe the tendency of an object in motion to remain in motion, and an object at rest to remain at rest. Galileo's observations, in fact, formed the foundation for the laws of motion.

In the years that followed Galileo's death, some of the world's greatest scientific minds became involved in the effort to understand the forces that kept the planets in motion around the Sun. Among them were Johannes Kepler (1571-1630), Robert Hooke (1635-1703), and Edmund Halley (1656-1742). As a result of a dispute between Hooke and Sir Christopher Wren (1632-1723) over the subject, Halley brought the question to his esteemed friend Isaac Newton. As it turned out, Newton had long been considering the possibility that certain laws of motion existed, and these he presented in definitive form in his Principia (1687).

The impact of the Newton's book, which included his observations on gravity, was nothing short of breathtaking. For the next three centuries, human imagination would be ruled by the Newtonian framework, and only in the twentieth century would the onset of new ideas reveal its limitations. Yet even today, outside the realm of quantum mechanics and relativity theory—in other words, in the world of everyday experience—Newton's laws of motion remain firmly in place.

Also read article about Laws of Motion from Wikipedia

User Contributions:

Comment about this article, ask questions, or add new information about this topic: