Though the term "aerodynamics" is most commonly associated with airplanes and the overall science of flight, in fact, its application is much broader. Simply put, aerodynamics is the study of airflow and its principles, and applied aerodynamics is the science of improving manmade objects such as airplanes and automobiles in light of those principles. Aside from the obvious application to these heavy forms of transportation, aerodynamic concepts are also reflected in the simplest of manmade flying objects—and in the natural model for all studies of flight, a bird's wings.


All physical objects on Earth are subject to gravity, but gravity is not the only force that tends to keep them pressed to the ground. The air itself, though it is invisible, operates in such a way as to prevent lift, much as a stone dropped into the water will eventually fall to the bottom. In fact, air behaves much like water, though the downward force is not as great due to the fact that air's pressure is much less than that of water. Yet both are media through which bodies travel, and air and water have much more in common with one another than either does with a vacuum.

Liquids such as water and gasses such as air are both subject to the principles of fluid dynamics, a set of laws that govern the motion of liquids and vapors when they come in contact with solid surfaces. In fact, there are few significant differences—for the purposes of the present discussion—between water and air with regard to their behavior in contact with solid surfaces.

When a person gets into a bathtub, the water level rises uniformly in response to the fact that a solid object is taking up space. Similarly, air currents blow over the wings of a flying aircraft in such a way that they meet again more or less simultaneously at the trailing edge of the wing. In both cases, the medium adjusts for the intrusion of a solid object. Hence within the parameters of fluid dynamics, scientists typically use the term "fluid" uniformly, even when describing the movement of air.

The study of fluid dynamics in general, and of air flow in particular, brings with it an entire vocabulary. One of the first concepts of importance is viscosity, the internal friction in a fluid that makes it resistant to flow and resistant to objects flowing through it. As one might suspect, viscosity is a far greater factor with water than with air, the viscosity of which is less than two percent that of water. Nonetheless, near a solid surface—for example, the wing of an airplane—viscosity becomes a factor because air tends to stick to that surface.

Also significant are the related aspects of density and compressibility. At speeds below 220 MPH (354 km/h), the compressibility of air is not a significant factor in aerodynamic design. However, as air flow approaches the speed of sound—660 MPH (1,622 km/h)—compressibility becomes a significant factor. Likewise temperature increases greatly when airflow is supersonic, or faster than the speed of sound.

All objects in the air are subject to two types of airflow, laminar and turbulent. Laminar flow is smooth and regular, always moving at the same speed and in the same direction. This type of airflow is also known as streamlined flow, and under these conditions every particle of fluid that passes a particular point follows a path identical to all particles that passed that point earlier. This may be illustrated by imagining a stream flowing around a twig.

By contrast, in turbulent flow the air is subject to continual changes in speed and direction—as for instance when a stream flows over shoals of rocks. Whereas the mathematical model of laminar airflow is rather straightforward, conditions are much more complex in turbulent flow, which typically occurs in the presence either of obstacles or of high speeds.

Absent the presence of viscosity, and thus in conditions of perfect laminar flow, an object behaves according to Bernoulli's principle, sometimes known as Bernoulli's equation. Named after the Swiss mathematician and physicist Daniel Bernoulli (1700-1782), this proposition goes to the heart of that which makes an airplane fly.

While conducting experiments concerning the conservation of energy in liquids, Bernoulli observed that when the diameter of a pipe is reduced, the water flows faster. This suggested to him that some force must be acting upon the water, a force that he reasoned must arise from differences in pressure. Specifically, the slower-moving fluid had a greater pressure than the portion of the fluid moving through the narrower part of the pipe. As a result, he concluded that pressure and velocity are inversely related.

Bernoulli's principle states that for all changes in movement, the sum of static and dynamic pressure in a fluid remain the same. A fluid at rest exerts static pressure, which is the same as what people commonly mean when they say "pressure," as in "water pressure." As the fluid begins to move, however, a portion of the static pressure—proportional to the speed of the fluid—is converted to what scientists call dynamic pressure, or the pressure of movement. The greater the speed, the greater the dynamic pressure and the less the static pressure. Bernoulli's findings would prove crucial to the design of aircraft in the twentieth century, as engineers learned how to use currents of faster and slower air for keeping an airplane aloft.

Very close to the surface of an object experiencing airflow, however, the presence of viscosity plays havoc with the neat proportions of the Bernoulli's principle. Here the air sticks to the object's surface, slowing the flow of nearby air and creating a "boundary layer" of slow-moving

Bruce Burkhardt/Corbis
. Reproduced by permission.)
air. At the beginning of the flow—for instance, at the leading edge of an airplane's wing—this boundary layer describes a laminar flow; but the width of the layer increases as the air moves along the surface, and at some point it becomes turbulent.

These and a number of other factors contribute to the coefficients of drag and lift. Simply put, drag is the force that opposes the forward motion of an object in airflow, whereas lift is a force perpendicular to the direction of the wind, which keeps the object aloft. Clearly these concepts can be readily applied to the operation of an airplane, but they also apply in the case of an automobile, as will be shown later.



Birds are exquisitely designed (or adapted) for flight, and not simply because of the obvious fact

. Reproduced by permission.)
that they have wings. Thanks to light, hollow bones, their body weight is relatively low, giving them the advantage in overcoming gravity and remaining aloft. Furthermore, a bird's sternum or breast bone, as well as its pectoralis muscles (those around the chest) are enormous in proportion to its body size, thus helping it to achieve the thrust necessary for flight. And finally, the bird's lightweight feathers help to provide optimal lift and minimal drag.

A bird's wing is curved along the top, a crucial aspect of its construction. As air passes over the leading edge of the wing, it divides, and because of the curve, the air on top must travel a greater distance before meeting the air that flowed across the bottom. The tendency of airflow, as noted earlier, is to correct for the presence of solid objects. Therefore, in the absence of outside factors such as viscosity, the air on top "tries" to travel over the wing in the same amount of time that it takes the air below to travel under the wing. As shown by Bernoulli, the fast-moving air above the wing exerts less pressure than the slow-moving air below it; hence there is a difference in pressure between the air below and the air above, and this keeps the wing aloft.

When a bird beats its wings, its downstrokes propel it, and as it rises above the ground, the force of aerodynamic lift helps push its wings upward in preparation for the next downstroke. However, to reduce aerodynamic drag during the upstroke, the bird folds its wings, thus decreasing its wingspan. Another trick that birds execute instinctively is the moving of their wings forward and backward in order to provide balance. They also "know" how to flap their wings in a direction almost parallel to the ground when they need to fly slowly or hover.

Witnessing the astonishing aerodynamic feats of birds, humans sought the elusive goal of flight from the earliest of times. This was symbolized by the Greek myth of Icarus and Daedalus, who escaped from a prison in Crete by constructing a set of bird-like wings and flying away. In the world of physical reality, however, the goal would turn out to be unattainable as long as humans attempted to achieve flight by imitating birds.

As noted earlier, a bird's physiology is quite different from that of a human being. There is simply no way that a human can fly by flapping his arms—nor will there ever be a man strong enough to do so, no matter how apparently well-designed his mechanical wings are. Indeed, to be capable of flying like a bird, a man would have to have a chest so enormous in proportion to his body that he would be hideous in appearance.

Not realizing this, humans for centuries attempted to fly like birds—with disastrous results. An English monk named Eilmer (b. 980) attempted to fly off the tower of Malmesbury Abbey with a set of wings attached to his arms and feet. Apparently Eilmer panicked after gliding some 600 ft (about 200 m) and suddenly plummeted to earth, breaking both of his legs. At least he lived; more tragic was the case of Abul Qasim Ibn Firnas (d. 873), an inventor from Cordoba in Arab Spain who devised and demonstrated a glider. Much of Cordoba's population came out to see him demonstrate his flying machine, but after covering just a short distance, the craft fell to earth. Severely wounded, Ibn Firnas died shortly afterward.

The first real progress in the development of flying machines came when designers stopped trying to imitate birds and instead used the principle of buoyancy. Hence in 1783, the French brothers Jacques-Etienne and Joseph-Michel Montgolfier constructed the first practical balloon.

Balloons and their twentieth-century descendant, the dirigible, had a number of obvious drawbacks, however. Without a motor, a balloon could not be guided, and even with a motor, dirigibles proved highly dangerous. At that stage, most dirigibles used hydrogen, a gas that is cheap and plentiful, but extremely flammable. After the Hindenburg exploded in 1937, the age of passenger travel aboard airships was over.

However, the German military continued to use dirigibles for observation purposes, as did the United States forces in World War II. Today airships, the most famous example being the Goodyear Blimp, are used not only for observation but for advertising. Scientists working in rain forests, for instance, use dirigibles to glide above the forest canopy; as for the Goodyear Blimp, it provides television networks with "eye in the sky" views of large sporting events.

The first man to make a serious attempt at creating a heavier-than-air flying machine (as opposed to a balloon, which uses gases that are lighter than air) was Sir George Cayley (1773-1857), who in 1853 constructed a glider. It is interesting to note that in creating this, the forerunner of the modern airplane, Cayley went back to an old model: the bird. After studying the physics of birds' flight for many years, he equipped his glider with an extremely wide wingspan, used the lightest possible materials in its construction, and designed it with exceptionally smooth surfaces to reduce drag.

The only thing that in principle differentiated Cayley's craft from a modern airplane was its lack of an engine. In those days, the only possible source of power was a steam engine, which would have added far too much weight to his aircraft. However, the development of the internal-combustion engine in the nineteenth century overcame that obstacle, and in 1903 Orville and Wilbur Wright achieved the dream of flight that had intrigued and eluded human beings for centuries.


Once engineers and pilots took to the air, they encountered a number of factors that affect flight. In getting aloft and staying aloft, an aircraft is subject to weight, lift, drag, and thrust.

As noted earlier, the design of an airplane wing takes advantage of Bernoulli's principle to give it lift. Seen from the end, the wing has the shape of a long teardrop lying on its side, with the large end forward, in the direction of airflow, and the narrow tip pointing toward the rear. (Unlike a teardrop, however, an airplane's wing is asymmetrical, and the bottom side is flat.) This cross-section is known as an airfoil, and the greater curvature of its upper surface in comparison to the lower side is referred to as the airplane's camber. The front end of the airfoil is also curved, and the chord line is an imaginary straight line connecting the spot where the air hits the front—known as the stagnation point—to the rear, or trailing edge, of the wing.

Again in accordance with Bernoulli's principle, the shape of the airflow facilitates the spread of laminar flow around it. The slower-moving currents beneath the airfoil exert greater pressure than the faster currents above it, giving lift to the aircraft.

Another parameter influencing the lift coefficient (that is, the degree to which the aircraft experiences lift) is the size of the wing: the longer the wing, the greater the total force exerted beneath it, and the greater the ratio of this pressure to that of the air above. The size of a modern aircraft's wing is actually somewhat variable, due to the presence of flaps at the trailing edge.

With regard to the flaps, however, it should be noted that they have different properties at different stages of flight: in takeoff, they provide lift, but in stable flight they increase drag, and for that reason the pilot retracts them. In preparing for landing, as the aircraft slows and descends, the extended flaps then provide stability and assist in the decrease of speed.

Speed, too, encourages lift: the faster the craft, the faster the air moves over the wing. The pilot affects this by increasing or decreasing the power of the engine, thus regulating the speed with which the plane's propellers turn. Another highly significant component of lift is the airfoil's angle of attack—the orientation of the airfoil with regard to the air flow, or the angle that the chord line forms with the direction of the air stream.

Up to a point, increasing the angle of attack provides the aircraft with extra lift because it moves the stagnation point from the leading edge down along the lower surface; this increases the low-pressure area of the upper surface. However, if the pilot increases the angle of attack too much, this affects the boundary layer of slow-moving air, causing the aircraft to go into a stall.

Together the engine provides the propellers with power, and this gives the aircraft thrust, or propulsive force. In fact, the propeller blades constitute miniature wings, pivoted at the center and powered by the engine to provide rotational motion. As with the wings of the aircraft, the blades have a convex forward surface and a narrow trailing edge. Also like the aircraft wings, their angle of attack (or pitch) is adjusted at different points for differing effects. In stable flight, the pilot increases the angle of attack for the propeller blades sharply as against airflow, whereas at takeoff and landing the pitch is dramatically reduced. During landing, in fact, the pilot actually reverses the direction of the propeller blades, turning them into a brake on the aircraft's forward motion—and producing that lurching sensation that a passenger experiences as the aircraft slows after touching down.

By this point there have been several examples regarding the use of the same technique alternately to provide lift or—when slowing or preparing to land—drag. This apparent inconsistency results from the fact that the characteristics of air flow change drastically from situation to situation, and in fact, air never behaves as perfectly as it does in a textbook illustration of Bernoulli's principle.

Not only is the aircraft subject to air viscosity—the air's own friction with itself—it also experiences friction drag, which results from the fact that no solid can move through a fluid without experiencing a retarding force. An even greater drag factor, accounting for one-third of that which an aircraft experiences, is induced drag. The latter results because air does not flow in perfect laminar streams over the airfoil; rather, it forms turbulent eddies and currents that act against the forward movement of the plane.

In the air, an aircraft experiences forces that tend to destabilize flight in each of three dimensions. Pitch is the tendency to rotate forward or backward; yaw, the tendency to rotate on a horizontal plane; and roll, the tendency to rotate vertically on the axis of its fuselage. Obviously, each of these is a terrifying prospect, but fortunately, pilots have a solution for each. To prevent pitching, they adjust the angle of attack of the horizontal tail at the rear of the craft. The vertical rear tail plays a part in preventing yawing, and to prevent rolling, the pilot raises the tips of the main wings so that the craft assumes a V-shape when seen from the front or back.

The above factors of lift, drag, thrust, and weight, as well as the three types of possible destabilization, affect all forms of heavier-thanair flying machines. But since the 1944 advent of jet engines, which travel much faster than piston-driven engines, planes have flown faster and faster, and today some craft such as the Concorde are capable of supersonic flight. In these situations, air compressibility becomes a significant issue.

Sound is transmitted by the successive compression and expansion of air. But when a plane is traveling at above Mach 1.2—the Mach number indicates the speed of an aircraft in relation to the speed of sound—there is a significant discrepancy between the speed at which sound is traveling away from the craft, and the speed at which the craft is moving away from the sound. Eventually the compressed sound waves build up, resulting in a shock wave.

Down on the ground, the shock wave manifests as a "sonic boom"; meanwhile, for the aircraft, it can cause sudden changes in pressure, density, and temperature, as well as an increase in drag and a loss of stability. To counteract this effect, designers of supersonic and hypersonic (Mach 5 and above) aircraft are altering wing design, using a much narrower airfoil and swept-back wings.

One of the pioneers in this area is Richard Whitcomb of the National Aeronautics and Space Administration (NASA). Whitcomb has designed a supercritical airfoil for a proposed hypersonic plane, which would ascend into outer space in the course of a two-hour flight—all the time needed for it to travel from Washington, D.C., to Tokyo, Japan. Before the craft can become operational, however, researchers will have to figure out ways to control temperatures and keep the plane from bursting into flame as it reenters the atmosphere.

Much of the research for improving the aerodynamic qualities of such aircraft takes place in wind tunnels. First developed in 1871, these use powerful fans to create strong air currents, and over the years the top speed in wind tunnels has been increased to accommodate testing on supersonic and hypersonic aircraft. Researchers today use helium to create wind blasts at speeds up to Mach 50.


Long before engineers began to dream of sending planes into space for transoceanic flight—about 14,000 years ago, in fact—many of the features that make an airplane fly were already present in the boomerang. It might seem backward to move from a hypersonic jet to a boomerang, but in fact, it is easier to appreciate the aerodynamics of small objects, including the kite and even the paper airplane, once one comprehends the larger picture.

There is a certain delicious irony in the fact that the first manmade object to take flight was constructed by people who never advanced beyond the Stone Age until the nineteenth century, when the Europeans arrived in Australia. As the ethnobotanist Jared Diamond showed in his groundbreaking work Guns, Germs, and Steel: The Fates of Human Societies (1997), this was not because the Aborigines of Australia were less intelligent than Europeans. In fact, as Diamond showed, an individual would actually have to be smarter to figure out how to survive on the limited range of plants and animals available in Australia prior to the introduction of Eurasian flora and fauna. Hence the wonder of the boomerang, one of the most ingenious inventions ever fashioned by humans in a "primitive" state.

Thousands of years before Bernoulli, the boomerang's designers created an airfoil consistent with Bernoulli's principle. The air below exerts more pressure than the air above, and this, combined with the factors of gyroscopic stability and gyroscopic precession, gives the boomerang flight.

Gyroscopic stability can be illustrated by spinning a top: the action of spinning itself keeps the top stable. Gyroscopic precession is a much more complex process: simply put, the leading wing of the boomerang—the forward or upward edge as it spins through the air—creates more lift than the other wing. At this point it should be noted that, contrary to the popular image, a boomerang travels on a plane perpendicular to that of the ground, not parallel. Hence any thrower who knows what he or she is doing tosses the boomerang not with a side-arm throw, but overhand.

And of course a boomerang does not just sail through the air; a skilled thrower can make it come back as if by magic. This is because the force of the increased lift that it experiences in flight, combined with gyroscopic precession, turns it around. As noted earlier, in different situations the same force that creates lift can create drag, and as the boomerang spins downward the increasing drag slows it. Certainly it takes great skill for a thrower to make a boomerang come back, and for this reason, participants in boomerang competitions often attach devices such as flaps to increase drag on the return cycle.

Another very early example of an aerodynamically sophisticated humanmade device—though it is quite recent compared to the boomerang—is the kite, which first appeared in China in about 1000 B.C. The kite's design borrows from avian anatomy, particularly the bird's light, hollow bones. Hence a kite, in its simplest form, consists of two crossed strips of very light wood such as balsa, with a lightweight fabric stretched over them.

Kites can come in a variety of shapes, though for many years the well-known diamond shape has been the most popular, in part because its aerodynamic qualities make it easiest for the novice kite-flyer to handle. Like birds and boomerangs, kites can "fly" because of the physical laws embodied in Bernoulli's principle: at the best possible angle of attack, the kite experiences a maximal ratio of pressure from the slower-moving air below as against the faster-moving air above.

For centuries, when the kite represented the only way to put a humanmade object many hundreds of feet into the air, scientists and engineers used them for a variety of experiments. Of course, the most famous example of this was Benjamin Franklin's 1752 experiment with electricity. More significant to the future of aerodynamics were investigations made half a century later by Cayley, who recognized that the kite, rather than the balloon, was an appropriate model for the type of heavier-than-air flight he intended.

In later years, engineers built larger kites capable of lifting men into the air, but the advent of the airplane rendered kites obsolete for this purpose. However, in the 1950s an American engineer named Francis Rogallo invented the flexible kite, which in turn spawned the delta wing kite used by hang gliders. During the 1960s, Domina Jolbert created the parafoil, an even more efficient device, which took nonmechanized human flight perhaps as far as it can go.

Akin to the kite, glider, and hang glider is that creation of childhood fancy, the paper airplane. In its most basic form—and paper airplane enthusiasts are capable of fairly complex designs—a paper airplane is little more than a set of wings. There are a number or reasons for this, not least the fact that in most cases, a person flying a paper airplane is not as concerned about pitch, yaw, and roll as a pilot flying with several hundred passengers on board would be.

However, when fashioning a paper airplane it is possible to add a number of design features, for instance by folding flaps upward at the tail. These become the equivalent of the elevator, a control surface along the horizontal edge of a real aircraft's tail, which the pilot rotates upward to provide stability. But as noted by Ken Blackburn, author of several books on paper airplanes, it is not necessarily the case that an airplane must have a tail; indeed, some of the most sophisticated craft in the sky today—including the fearsome B-2 "Stealth" bomber—do not have tails.

A typical paper airplane has low aspect ratio wings, a term that refers to the size of the wingspan compared to the chord line. In subsonic flight, higher aspect ratios are usually preferred, and this is certainly the case with most "real" gliders; hence their wings are longer, and their chord lines shorter. But there are several reasons why this is not the case with a paper airplane.

First of all, as Blackburn noted wryly on his Web site, "Paper is a lousy building material. There is a reason why real airplanes are not made of paper." He stated the other factors governing paper airplanes' low aspect ratio in similarly whimsical terms. First, "Low aspect ratio wings are easier to fold…."; second, "Paper airplane gliding performance is not usually very important…."; and third, "Low-aspect ratio wings look faster, especially if they are swept back."

The reason why low-aspect ratio wings look faster, Blackburn suggested, is that people see them on jet fighters and the Concorde, and assume that a relatively narrow wing span with a long chord line yields the fastest speeds. And indeed they do—but only at supersonic speeds. Below the speed of sound, high-aspect ratio wings are best for preventing drag. Furthermore, as Blackburn went on to note, low-aspect ratio wings help the paper airplane to with stand the relatively high launch speeds necessary to send them into longer glides.

In fact, a paper airplane is not subject to anything like the sort of design constraints affecting a real craft. All real planes look somewhat similar, because the established combinations, ratios, and dimensions of wings, tails, and fuselage work best. Certainly there is a difference in basic appearance between subsonic and supersonic aircraft—but again, all supersonic jets have more or less the same low-aspect, swept wing. "With paper airplanes," Blackburn wrote, "it's easy to make airplanes that don't look like real airplanes" since "The mission of a paper airplane is [simply] to provide a good time for the pilot."


The preceding discussions of aerodynamics in action have concerned the behavior of objects off the ground. But aerodynamics is also a factor in wheeled transport on Earth's surface, whether by bicycle, automobile, or some other variation.

On a bicycle, the rider accounts for 65-80% of the drag, and therefore his or her position with regard to airflow is highly important. Thus, from as early as the 1890s, designers of racing bikes have favored drop handlebars, as well as a seat and frame that allow a crouched position. Since the 1980s, bicycle designers have worked to eliminate all possible extra lines and barriers to airflow, including the crossbar and chainstays.

A typical bicycle's wheel contains 32 or 36 cylindrical spokes, and these can affect aerodynamics adversely. As the wheel rotates, the airflow behind the spoke separates, creating turbulence and hence drag. For this reason, some of the most advanced bicycles today use either aerodynamic rims, which reduce the length of the spokes, three-spoke aerodynamic wheels, or even solid wheels.

The rider's gear can also serve to impede or enhance his velocity, and thus modern racing helmets have a streamlined shape—rather like that of an airfoil. The best riders, such as those who compete in the Olympics or the Tour de France, have bikes custom-designed to fit their own body shape.

One interesting aspect of aerodynamics where it concerns bicycle racing is the phenomenon of "drafting." Riders at the front of a pack, like riders pedaling alone, consume 30-40% more energy than do riders in the middle of a pack. The latter are benefiting from the efforts of bicyclists in front of them, who put up most of the wind resistance. The same is true for bicyclists who ride behind automobiles or motorcycles.

The use of machine-powered pace vehicles to help in achieving extraordinary speeds is far from new. Drafting off of a railroad car with specially designed aerodynamic shields, a rider in 1896 was able to exceed 60 MPH (96 km/h), a then unheard-of speed. Today the record is just under 167 MPH (267 km/h). Clearly one must be a highly skilled, powerful rider to approach anything like this speed; but design factors also come into play, and not just in the case of the pace vehicle. Just as supersonic jets are quite different from ordinary planes, super high-speed bicycles are not like the average bike; they are designed in such a way that they must be moving faster than 60 MPH before the rider can even pedal.

Ronnen Eshel/Corbis
. Reproduced by permission.)

With regard to automobiles, as noted earlier, aerodynamics has a strong impact on body design. For this reason, cars over the years have become steadily more streamlined and aerodynamic in appearance, a factor that designers balance with aesthetic appeal. Today's Chrysler PT Cruiser, which debuted in 2000, may share outward features with 1930s and 1940s cars, but the PT Cruiser's design is much more sound aerodynamically—not least because a modern vehicle can travel much, much faster than the cars driven by previous generations.

Nowhere does the connection between aerodynamics and automobiles become more crucial than in the sport of auto racing. For race-car drivers, drag is always a factor to be avoided and counteracted by means ranging from drafting to altering the body design to reduce the airflow under the vehicle. However, as strange as it may seem, a car—like an airplane—is also subject to lift.

It was noted earlier that in some cases lift can be undesirable in an airplane (for instance, when trying to land), but it is virtually always undesirable in an automobile. The greater the speed, the greater the lift force, which increases the threat of instability. For this reason, builders of race cars design their vehicles for negative lift: hence a typical family car has a lift coefficient of about 0.03, whereas a race car is likely to have a coefficient of −3.00.

Among the design features most often used to reduce drag while achieving negative lift is a rear-deck spoiler. The latter has an airfoil shape, but its purpose is different: to raise the rear stagnation point and direct air flow so that it does not wrap around the vehicle's rear end. Instead, the spoiler creates a downward force to stabilize the rear, and it may help to decrease drag by reducing the separation of airflow (and hence the creation of turbulence) at the rear window.

Similar in concept to a spoiler, though somewhat different in purpose, is the aerodynamically curved shield that sits atop the cab of most modern eighteen-wheel transport trucks. The purpose of the shield becomes apparent when the truck is moving at high speeds: wind resistance becomes strong, and if the wind were to hit the truck's trailer head-on, it would be as though the air were pounding a brick wall. Instead, the shield scoops air upward, toward the rear of the truck. At the rear may be another panel, patented by two young engineers in 1994, that creates a drag-reducing vortex between panel and truck.


Cockpit Physics (Department of Physics, United States Air Force Academy web site.). <> (February 19, 2001).

K8AIT Principles of Aeronautics Advanced Text. (web site). <> (February 19, 2001).

Macaulay, David. The New Way Things Work. Boston: Houghton Mifflin, 1998.

Blackburn, Ken. Paper Airplane Aerodynamics. (web site). <> (February 19, 2001).

Schrier, Eric and William F. Allman. Newton at the Bat: The Science in Sports. New York: Charles Scribner's Sons, 1984.

Smith, H. C. The Illustrated Guide to Aerodynamics. Blue Ridge Summit, PA: Tab Books, 1992.

Stever, H. Guyford, James J. Haggerty, and the Editors of Time-Life Books. Flight. New York: Time-Life Books, 1965.

Suplee, Curt. Everyday Science Explained. Washington, D.C.: National Geographic Society, 1996.



The study of airflow and its principles. Applied aerodynamics is the science of improving man-made objects in light of those principles.


The design of an airplane's wing when seen from the end, a shape intended to maximize the aircraft's response to airflow.


The orientation of the airfoil with regard to the airflow, or the angle that the chord line forms with the direction of the air stream.


A proposition, credited to Swiss mathematician and physicist Daniel Bernoulli (1700-1782), which maintains that slower-moving fluid exerts greater pressure than faster-movingfluid.


The enhanced curvature on the upper surface of an airfoil.


The distance, along an imaginary straight line, from the stagnation point of an airfoil to the rear, or trailing edge.


The force that opposes the forward motion of an object in airflow.


A term describing a streamlined flow, in which all particles move at the same speed and in the same direction. Its opposite is turbulent flow.


An aerodynamic force perpendicular to the direction of the wind. For an aircraft, lift is the force that raises it off the ground and keeps it aloft.


The tendency of an aircraft in flight to rotate forward or backward; see also yaw and roll.


The tendency of an aircraft in flight to rotate vertically on the axis of its fuselage; see also pitch and yaw.


The spot where airflow hits the leading edge of an airfoil.


Faster than Mach 1, or the speed of sound—660 MPH (1,622km/h). Speeds above Mach 5 are referred to as hypersonic.


A term describing a highly irregular form of flow, in which a fluid is subject to continual changes in speed and direction. Its opposite is laminar flow.


The internal friction in a fluid that makes it resistant to flow.


The tendency of an aircraft in flight to rotate on a horizontal plane; see also Pitch and Roll.

User Contributions:

Comment about this article, ask questions, or add new information about this topic:


Aerodynamics forum