CARBOHYDRATES

CONCEPT

Carbohydrates are nutrients, along with proteins and other types of chemical compounds, but they are much more than that. In addition to sugars, of which there are many more varieties than ordinary sucrose, or table sugar, carbohydrates appear in the form of starches and cellulose. As such, they are the structural materials of which plants are made. Carbohydrates are produced by one of the most complex, vital, and amazing processes in the physical world: photosynthesis. Because they are an integral part of plant life, it is no wonder that carbohydrates are in most fruits and vegetables. And though they are not a dietary requirement in the way that vitamins or essential amino acids are, it is difficult to eat without ingesting some carbohydrates, which are excellent sources of quick-burning energy. Not all carbohydrates are of equal nutritional value, however: in general, the ones created by nature are good for the body, whereas those produced by human intervention—some forms of pasta and most varieties of bread, white rice, crackers, cookies, and so forth—are much less beneficial.

HOW IT WORKS

WHAT CARBOHYDRATES ARE

Carbohydrates are naturally occurring compounds that consist of carbon, hydrogen, and oxygen, and are produced by green plants in the process of undergoing photosynthesis. In simple terms, photosynthesis is the biological conversion of light energy (that is, electromagnetic energy) from the Sun to chemical energy in plants. It is an extremely complex process, and a thorough treatment of it involves a great deal of technical terminology. Although we discuss the fundamentals of photosynthesis later in this essay, we do so only in the most cursory fashion.

Photosynthesis involves the conversion of carbon dioxide and water to sugars, which, along with starches and cellulose, are some of the more well known varieties of carbohydrate. Sugars can be defined as any of a number of water-soluble compounds, of varying sweetness. (What we think of as sugar—that is, table sugar—is actually sucrose, discussed later.) Starches are complex carbohydrates without taste or odor, which are granular or powdery in physical form. Cellulose is a polysaccharide, made from units of glucose, that constitutes the principal part of the cell walls of plants and is found naturally in fibrous materials, such as cotton. Commercially, it is a raw material for such manufactured goods as paper, cellophane, and rayon.

MONOSACCHARIDES.

The preceding definitions contain several words that also must be defined. Carbohydrates are made up of building blocks called monosaccharides, the simplest type of carbohydrate. Found in grapes and other fruits and also in honey, they can be broken down chemically into their constituent elements, but there is no carbohydrate more chemically simple than a monosaccharide. Hence, they are also known as simple sugars or simple carbohydrates.

Examples of simple sugars include glucose, which is sweet, colorless, and water-soluble and appears widely in nature. Glucose, also known as dextrose, grape sugar, and corn sugar, is the principal form in which carbohydrates are assimilated, or taken in, by animals. Other monosaccharides

MICROGRAPH OF PLANT CELL CHLOROPLASTS, WHERE PHOTOSYNTHESIS, THE BIOLOGICAL CONVERSION OF LIGHT FROM THE SUN INTO CHEMICAL ENERGY, TAKES PLACE. HIGHER PLANTS HAVE THESE STRUCTURES, WHICH CONTAIN A CHEMICAL KNOWN AS CHLOROPHYLL THAT ABSORBS LIGHT AND SPEEDS UP THE PROCESS OF PHOTOSYNTHESIS. (© Science Pictures Limited/Corbis. Reproduced by permission.)
MICROGRAPH OF PLANT CELL CHLOROPLASTS, WHERE PHOTOSYNTHESIS, THE BIOLOGICAL CONVERSION OF LIGHT FROM THE SUN INTO CHEMICAL ENERGY, TAKES PLACE. HIGHER PLANTS HAVE THESE STRUCTURES, WHICH CONTAIN A CHEMICAL KNOWN AS CHLOROPHYLL THAT ABSORBS LIGHT AND SPEEDS UP THE PROCESS OF PHOTOSYNTHESIS. (
© Science Pictures Limited/Corbis
. Reproduced by permission.)
include fructose, or fruit sugar, and galactose, which is less soluble and sweet than glucose and usually appears in combination with other simple sugars rather than by itself. Glucose, fructose, and galactose are isomers, meaning that they have the same chemical formula (C6H12O6), but different chemical structures and therefore different chemical properties.

DISACCHARIDES.

When two monosaccharide molecules chemically bond with each other, the result is one of three general types of complex sugar: a disaccharide, oligosaccharide, or polysaccharide. Disaccharides, or double sugars, are composed of two monosaccharides. By far the most well known example of a disaccharide is sucrose, or table sugar, which is formed from the bonding of a glucose molecule with a molecule of fructose. Sugar beets and cane sugar provide the principal natural sources of sucrose, which the average American is most likely to encounter in refined form as white, brown, or powdered sugar.

Another disaccharide is lactose, or milk sugar, the only type of sugar that is produced from animal (i.e., mammal) rather than vegetable sources. Maltose, a fermentable sugar typically formed from starch by the action of the enzyme amylase, is also a disaccharide. Sucrose, lactose, and maltose are all isomers, with the formula C12H22O11.

OLIGOSACCHARIDES AND POLYSACCHARIDES.

The definitions of oligosaccharide and polysaccharide are so close as to be confusing. An oligosaccharide is sometimes defined as a carbohydrate containing a known, small number of monosaccharide units, while a polysaccharide is a carbohydrate composed of two or more monosaccharides. In theory, this means practically the same thing, but in practice, an oligosaccharide contains 3-6 monosaccharide units, whereas a polysaccharide is composed of more than six.

Oligosaccharides are found rarely in nature, though a few plant forms have been discovered. Far more common are polysaccharides ("many sugars"), which account for the vast majority of carbohydrate types found in nature. (See Where to Learn More for the Nomenclature of Carbohydrates Web site, operated by the Department of Chemistry at Queen Mary College, University of London. A glance at the site will suggest something about the many, many varieties of carbohydrates.)

Polysaccharides may be very large, consisting of as many as 10,000 monosaccharide units strung together. Given this vast range of sizes, it should not be surprising that there are hundreds of polysaccharide types, which differ from one another in terms of size, complexity, and chemical makeup. Cellulose itself is a polysaccharide, the most common variety known, composed of numerous glucose units joined to one another. Starch and glycogen are also glucose polysaccharides. The first of these polysaccharides is found primarily in the stems, roots, and seeds of plants. As for glycogen, this is the most common form in which carbohydrates are stored in animal tissues, particularly muscle and liver tissues.

PHOTOSYNTHESIS

Photosynthesis, as we noted earlier, is the biological conversion of light or electromagnetic energy from the Sun into chemical energy. It occurs in green plants, algae, and some types of bacteria and requires a series of biochemical reactions. Higher plants have structures called chloroplasts, which contain a dark green or blue-black chemical known as chlorophyll. Light absorption by chlorophyll catalyzes, or speeds up, the process of photosynthesis. (A catalyst is a substance that accelerates a chemical reaction without participating in it.)

In photosynthesis, carbon dioxide and water react with each other in the presence of light and chlorophyll to produce a simple carbohydrate and oxygen. This is one of those statements in the realm of science that at first glance sounds a bit dry and boring but which, in fact, encompasses one of life's great mysteries—a concept far more captivating than any number of imaginary, fantastic, or pseudoscientific ideas one could concoct. Photosynthesis is one of the most essential life-sustaining processes, making possible the nutrition of all things and the respiration of animals and other oxygen-breathing organisms.

In photosynthesis, plants take a waste product of human and animal respiration and, through a series of chemical reactions, produce both food and oxygen. The food gives nourishment to the plant, which, unlike an animal, is capable of producing its own nutrition from its own body with the aid only of sunlight and a few chemical compounds. Later, when the plant is eaten by an animal or when it dies and is consumed by bacteria and other decomposers, it will pass on its carbohydrate content to other creatures. (See Food Webs for more about plants as autotrophs and the relationships among primary producers, consumers, and decomposers.)

A carbohydrate is not the only useful product of the photosynthetic reaction. The reaction produces an extremely important waste by-product—waste, that is, from the viewpoint of the plant, which has no need of oxygen. Yet the oxygen it generates in photosynthesis makes life possible for animals and many single-cell life-forms, which depend on oxygen for respiration.

THE PHOTOSYNTHESIS EQUATION.

The photosynthesis reaction can be represented thus as a chemical equation:

Note that the arrow indicates that a chemical reaction has taken place with the assistance of light and chlorophyll. In the same way, heat from a Bunsen burner may be required to initiate some other chemical reaction, without actually being part of the reactants to the left of the arrow. In the present equation, neither the added energy nor the catalyst appears on the left side, because they are not actual physical participants consumed in the reaction, as the carbon dioxide and water are. The catalyst does not participate in the reaction, whereas the energy, while it is consumed in the reaction, is not a material or physical participant—that is, it is energy, not matter.

One might also wonder why the equation shows six molecules of carbon dioxide and six of water. Why not one of each, for the sake of simplicity? To produce a balanced chemical equation, in which the same number of atoms appears on either side of the arrow, it is necessary to show six carbon dioxide molecules reacting with six water molecules to produce six oxygen molecules and a single glucose molecule. Thus, both sides contain six atoms of carbon, 12 of hydrogen, and 18 of oxygen.

The equation gives the impression that photosynthesis is a simple, one-step process, but nothing could be further from the truth. In fact, the process occurs one small step at a time. It also involves many, many intricacies and aspects that require the introduction of scores of new terms and ideas. Such a discussion is beyond the scope of the present essay, and therefore the reader is encouraged to consult a reliable textbook for further information on the details of photosynthesis.

REAL-LIFE APPLICATIONS

FRUITS AND VEGETABLES

One of the principal ways in which people obtain carbohydrates from their diets is through fruits and vegetables. The distinctions between these two are based not on science but on custom. Traditionally, vegetables are plant tissues (which may be sweet, but usually are not), that are eaten as a substantial part of a meal's main course. By contrast, fruits are almost always sweet and are eaten as desserts or snacks. It so happens, too, that people are much more likely to cook vegetables than they are fruits, though vegetables are nutritionally best when eaten raw.

Fruits and vegetables are heavy in carbohydrate content, in the form of edible sugars and starches but also inedible cellulose, whose role in the diet will be examined later. In a fresh vegetable,

CELLULOSE, SOMETIMES CALLED FIBER, IS AN IMPORTANT DIETARY COMPONENT THAT AIDS IN DIGESTION. IT IS ABUNDANT IN FRUITS AND VEGETABLES, YET HUMANS LACK THE ENZYME NECESSARY TO DIGEST IT. WITH THE HELP OF MICROBES IN THEIR GUT, TERMITES CAN DIGEST CELLULOSE. (© George D. Lepp/Corbis. Reproduced by permission.)
CELLULOSE, SOMETIMES CALLED FIBER, IS AN IMPORTANT DIETARY COMPONENT THAT AIDS IN DIGESTION. IT IS ABUNDANT IN FRUITS AND VEGETABLES, YET HUMANS LACK THE ENZYME NECESSARY TO DIGEST IT. WITH THE HELP OF MICROBES IN THEIR GUT, TERMITES CAN DIGEST CELLULOSE. (
© George D. Lepp/Corbis
. Reproduced by permission.)
for instance, water may account for about 70% of the volume, and proteins, fat, vitamins, and minerals may make up a little more than 5%, with nearly 25% taken up either by edible sugars and starches or by inedible cellulose fiber.

THE EXAMPLE OF THE ARTICHOKE.

Every fruit or vegetable one could conceivably eat—and there are hundreds—contains both edible carbohydrates, which are a good source of energy, and inedible ones, which provide fiber. An excellent example of this edible-inedible mixture is the globe, or French, artichoke—Cynara scolymus, a member of the family Asteraceae, which includes the sunflower. The globe artichoke (not to be confused with the Jerusalem artichoke, or Helianthus tuberosus) appears in the form of an inflorescence, or a cluster of flowers. This vegetable usually is steamed, and the bracts, or leaves, are dipped in butter or another sauce.

Not nearly all of the bract is edible, however; to consume the starchy "meat" of the artichoke, which has a distinctive, nutty flavor, one must draw the leaves between the teeth. Most of the artichoke's best parts are thus hidden away, and the best part of all—the tender and fully edible "heart"—is enclosed beneath an intimidating shield of slender thistles. Whoever first discovered that an artichoke could be eaten must have been a brave person indeed, and whoever ascertained how to eat it was a wise one. Thanks to these adventurous souls, the world's cuisine has an unforgettable delicacy.

THE CARBOHYDRATE CONTENT OF VEGETABLES.

In terms of edible carbohydrate content, the artichoke has a low percentage. A few vegetables have a smaller percentage of carbohydrates, whereas others have vastly higher percentages, as the list shown here illustrates. In general, it seems that the carbohydrate content of vegetables (and in each of these cases we are talking about edible carbohydrates, not cellulose) is in the range of about 5-10%, somewhere around 20%, or a very high 60-80%. There does not seem to be a great deal of variation in these ranges.

Water, Protein, and Carbohydrate Content of Selected Vegetables:

  • Artichoke: 85% water, 2.9% protein, 10.6% carbohydrate
  • Beets, red: 87.3% water, 1.6% protein, 9.9% carbohydrate
  • Celery: 94.1% water, 0.9% protein, 3.9% carbohydrate
  • Corn: 13.8% water, 8.9% protein, 72.2% carbohydrate
  • Lima bean: 10.3% water, 20.4% protein, 64% carbohydrate
  • Potato: 79.8% water, 2.1% protein, 17.1% carbohydrate
  • Red pepper: 74.3% water, 3.7% protein, 18.8% carbohydrate
  • Summer squash: 94% water, 1.1% protein, 4.2% carbohydrate

STARCHES

Not all the carbohydrates in these vegetables are the same. Some carbohydrates appear in the form of sugar and others in the form of inedible cellulose, discussed in the next section. In addition, some vegetables are high in starch content. As we noted earlier, starch is white and granular, and, unlike sugars, starches cannot be dissolved in cold water, alcohol, or other liquids that normally act as solvents.

Manufactured in plants' leaves, starch is the product of excess glucose produced during photosynthesis, and it provides the plant with an emergency food supply stored in the chloroplasts. Vegetables high in starch content are products of plants whose starchy portions happen to be the portions we eat. For example, there is the tuber, or underground bulb, of the potato as well as the seeds of corn, wheat, and rice. Thus, all of these vegetables, and foods derived from them, are heavy in the starch form of carbohydrate.

In addition to their role in the human diet, starches from corn, wheat, tapioca, and potatoes are put to numerous commercial uses. Because of its ability to thicken liquids and harden solids, starch is applied in products (e.g., cornstarch) that act as thickening agents, both for foods and nonfood items. Starch also is utilized heavily in various phases of the garment and garment-care industries to impart stiffness to fabrics. In the manufacture of paper, starch is used to increase the paper's strength. It also is employed in the production of cardboard and paper bags.

CELLULOSE

One of the aspects of fruits and vegetables to which we have alluded several times is the high content of inedible material, or cellulose. (Actually, it is edible—just not digestible.) A substance found in the cell walls of plants, cellulose is chemically like starch but even more rigid, and this property makes it an excellent substance for imparting strength to plant bodies. Animals do not have rigid, walled cells, but plants do. The heavy cellulose content in plants' cell walls gives them their erect, rigid form; in other words, without cellulose, plants might be limp and partly formless. Like human bone, plant cell walls are composed of fibrils (small filaments or fibers) that include numerous polysaccharides and proteins. One of these polysaccharides in cell walls is pectin, a substance that, when heated, forms a gel and is used by cooks in making jellies and jams. Some trees have a secondary cell wall over the primary one, containing yet another polysaccharide called lignin. Lignin makes the tree even more rigid, penetrable only with sharp axes.

CELLULOSE IN DIGESTION.

As we have noted, cellulose is abundant in fruits and vegetables, yet humans lack the enzyme necessary to digest it. Termites, cows, koalas, and horses all digest cellulose, but even these animals

NINETEENTH-CENTURY ADVERTISEMENT FOR STARCH. IN ADDITION TO THEIR ROLE IN THE HUMAN DIET, STARCHES ARE PUT TO NUMEROUS COMMERCIAL USES, FOR EXAMPLE, AS THICKENING AGENTS FOR FOOD, IN THE PRODUCTION OF CARDBOARD, AND IN VARIOUS PHASES OF THE GARMENT INDUSTRY TO IMPART STIFFNESS TO FABRICS. (© BettmannCorbis. Reproduced by permission.)
NINETEENTH-CENTURY ADVERTISEMENT FOR STARCH. IN ADDITION TO THEIR ROLE IN THE HUMAN DIET, STARCHES ARE PUT TO NUMEROUS COMMERCIAL USES, FOR EXAMPLE, AS THICKENING AGENTS FOR FOOD, IN THE PRODUCTION OF CARDBOARD, AND IN VARIOUS PHASES OF THE GARMENT INDUSTRY TO IMPART STIFFNESS TO FABRICS. (
© BettmannCorbis
. Reproduced by permission.)
and insect do not have an enzyme that digests this material. Instead, they harbor microbes in their guts that can do the digesting for them. (This is an example of symbiotic mutualism, a mutually beneficial relationship between organisms, discussed in Symbiosis.)

Cows are ruminants, or animals that chew their cud—that is, food regurgitated to be chewed again. Ruminants have several stomachs, or several stomach compartments, that break down plant material with the help of enzymes and bacteria. The partially digested material then is regurgitated into the mouth, where it is chewed to break the material down even further. (If you have ever watched cows in a pasture, you have probably observed them calmly chewing their cud.) The digestion of cellulose by bacteria in the stomachs of ruminants is anaerobic, meaning that the process does not require oxygen. One of the by-products of this anaerobic process is methane gas, which is foul smelling, flammable, and toxic. Ruminants give off large amounts of methane daily, which has some environmentalists alarmed, since cow-borne methane may contribute to the destruction of the ozone high in Earth's stratosphere.

Alhough cellulose is indigestible by humans, it is an important dietary component in that it aids in digestion. Sometimes called fiber or roughage, cellulose helps give food bulk as it moves through the digestive system and aids the body in pushing out foods and wastes. This is particularly important inasmuch as it helps make possible regular bowel movements, thus ridding the body of wastes and lowering the risk of colon cancer. (See Digestion for more about the digestive and excretory processes.)

OVERALL CARBOHYDRATE NUTRITION

A diet high in cellulose content can be beneficial for the reasons we have noted. Likewise, a healthy diet includes carbohydrate nutrients, but only under certain conditions. First of all, it should be understood that the human body does not have an essential need for carbohydrates in and of themselves—in other words, there are no "essential" carbohydrates, as there are essential amino acids or fatty acids.

On the other hand, it is very important to eat fresh fruits and vegetables, which, as we have seen, are heavy in carbohydrate content. Their importance has little do with their nutritional carbohydrate content, but rather with the vitamins, minerals, proteins, and dietary fiber that they contain. For these healthy carbohydrates, it is best to eat them in as natural a form as possible: for example, eat the whole orange, rather than just squeezing out the juice and throwing away the pulp. Also, raw spinach and other vegetables contain far more vitamins and minerals than the cooked versions.

SUGAR HIGHS AND FAT STORAGE.

Carbohydrates can give people a short burst of energy, and this is why athletes may "bulk up on carbs" right before competition. But if the carbohydrates are not quickly burned off, they eventually will be stored as fat. This is the case even with healthy carbohydrates, but the situation is much worse with junk-food carbohydrates, which offer only empty calories stripped of vitamin and mineral content. One example is a particular brand of candy bar that, over the years, has been promoted in commercials as a means of obtaining a quick burst of energy. In fact, this and all other white-sugar-based candies give only a quick "sugar high," followed almost immediately by a much lower energy "low"—and in the long run by the accumulation of fat.

Fat is the only form in which the body can store carbohydrates for the long haul, meaning that the "fat-free" stickers on many a package of cookies or cakes in the supermarket are as meaningless as the calories themselves are empty. Carbohydrate consumption is one of the main reasons why the average American is so overweight. With an in active lifestyle, as is typical of most adults in modern life, all those French fries, cookies, dinner rolls, and so on have no place to go but to the fat-storage centers in the abdomen, buttocks, and thighs. Of all carbohydrate-containing foods, the least fattening, of course, are natural nonstarches, such as fruits and vegetables (assuming they are not cooked in fat). Next on the least-fattening list are starchy natural foods, such as potatoes, and most fattening of all are processed starches, whether they come in the form of rice, wheat, or potato products.

WHY YOU CAN EAT MORE CARBOHYDRATES THAN PROTEINS.

One of the biggest problems with starches is that the body can consume so many of them compared with proteins and fats. How many times have you eaten a huge plate of mashed potatoes or rice, mountains of fries, or piece after piece of bread? All of us have done it: with carbohydrates, and particularly starches, it seems we can never get enough. But how many times have you eaten a huge plate of nothing but chicken, steak, or eggs? Probably not very often, and if you have tried to eat too much of these protein-heavy foods at one time, you most likely started to get sick.

The reason is that when you eat protein or fat, it triggers the release of a hormone called cholecystokinin (CCK) in the small intestine. CCK tells the brain, in effect, that the body is getting fed, and if enough CCK is released, it signals the brain that the body has received enough food. If one continues to consume proteins or fats beyond that point, nausea is likely to follow. Carbohydrates, on the other hand, do not cause a release of CCK; only when they enter the bloodstream do they finally send a signal to the brain that the body is satisfied. By then, most of us have piled on more mashed potatoes, which are destined to take their place in the body as fat stores.

WHERE TO LEARN MORE

Carbohydrates. Hardy Research Group, Department of Chemistry, University of Akron (Web site). <http://ull.chemistry.uakron.edu/genobc/Chapter_17/>.

Dey, P. M., and R. A. Dixon. Biochemistry of Storage Carbohydrates in Green Plants. Orlando, FL: Academic Press, 1985.

Carpi, Anthony. "Food Chemistry: Carbohydrates." Visionlearning.com (Web site). <http://www.vision learning.com/library/science/chemistry-2/CHE2.5-carbohydrates.htm>.

Food Resource, Oregon State University (Web site). <http://food.orst.edu/>.

Kennedy, Ron. "Carbohydrates in Nutrition." The Doctors' Medical Library (Web site). <http://www.medicallibrary.net/sites/carbohydrates_in_nutrition.html>.

"Nomenclature of Carbohydrates." Queen Mary College, University of London, Department of Chemistry (Web site). <http://www.chem.qmw.ac.uk/iupac/2carb/>.

Snyder, Carl H. The Extraordinary Chemistry of Ordinary Things. New York: John Wiley and Sons, 1998.

Spallholz, Julian E. Nutrition, Chemistry, and Biology. Englewood Cliffs, NJ: Prentice-Hall, 1989.

Wiley, T. S., and Bent Formby. Lights Out: Sleep, Sugar, and Survival. New York: Pocket Books, 2000.

KEY TERMS

CARBOHYDRATES:

Naturally occur ring compounds, consisting of carbon, hydrogen, and oxygen, whose primary function in the body is to supply energy. Included in the carbohydrate group are sugars, starches, cellulose, and various other substances. Most carbohydrates are produced by green plants in the process of undergoing photosynthesis.

CATALYST:

A substance that speeds up a chemical reaction without participating in it. Catalysts, of which enzymes are a good example, thus are not consumed in the reaction.

CELLULOSE:

A polysaccharide, made from units of glucose, that is the principal material in the cell walls of plants. Cellulose also is found in natural fibers, such as cotton, and is used as a raw material in manufacturing such products as paper.

COMPLEX CARBOHYDRATE:

A disaccharide, polysaccharide, or oligosaccharide. Also called a complex sugar.

DEXTROSE:

Another name for glucose.

DISACCHARIDE:

A double sugar, composed of two monosaccharides. Exam ples of disaccharides include the isomers sucrose, maltose, and lactose.

ENZYME:

A protein material that speeds up chemical reactions in the bodies of plants and animals.

FRUCTOSE:

Fruit sugar, a monosaccharide that is an isomer of glucose.

GALACTOSE:

A monosaccharide and isomer of glucose. Less soluble and sweet than glucose, galactose usually appears in combination with other simple sugars rather than by itself.

GLUCOSE:

A monosaccharide that occurs widely in nature and is the form in which animals usually receive carbohydrates. Also known as dextrose, grape sugar, and corn sugar.

GLYCOGEN:

A white polysaccharide that is the most common form in which carbohydrates are stored in animal tissues, particularly muscle and liver tissues.

GUT:

A term that refers to all or part of the alimentary canal, through which foods pass from the mouth to the intestines and wastes move from the intestines to the anus. Although the word is considered a bit crude in everyday life, physicians and bio logical scientists concerned with this part of the anatomy use it regularly.

ISOMERS:

Two substances that have the same chemical formula but differ in chemical structure and therefore in chemical properties.

LACTOSE:

Milk sugar. A disaccharide isomer of sucrose and maltose, lactose is the only major type of sugar that is produced from animal (i.e., mammal) rather than vegetable sources.

MALTOSE:

A fermentable sugar generally formed from starch by the action of the enzyme amylase. Maltose is a disaccharide isomer of sucrose and lactose.

MONOSACCHARIDE:

The simplest type of carbohydrate. Monosaccharides, which cannot be broken down chemically into simpler carbohydrates, also are known as simple sugars. Examples of monosaccharides include the isomers glucose, fructose, and galactose.

OLIGOSACCHARIDE:

A carbohydrate containing a known, small number of monosaccharide units, typically between three and six. Compare with polysaccharide.

PHOTOSYNTHESIS:

The biological conversion of light energy (that is, electromagnetic energy) from the Sun to chemical energy in plants. In this process, carbon dioxide and water are converted to carbohydrates and oxygen.

POLYSACCHARIDE:

A carbohydrate composed of more than six monosaccharides. A polysaccharide sometimes is defined as containing two or more monosaccharides, but this definition does little to distinguish it from an oligosaccharide.

SACCHARIDE:

A sugar.

SIMPLE SUGAR:

A monosaccharide, or simple carbohydrate.

STARCHES:

Complex carbohydrates, without taste or odor, which are granular or powdery in physical form.

SUCROSE:

Common table sugar (C12H22O11), a disaccharide formed from the bonding of a glucose molecule with a molecule of fructose. Sugar beets and cane sugar provide the principal natural sources of sucrose, which the average American is most likely to encounter in refined form as white, brown, or powdered sugar.

SUGARS:

One of the three principal types of carbohydrate, along with starches and cellulose. Sugars can be defined as any of various water-soluble carbohydrates of varying sweetness. What we think of as "sugar" (i.e., table sugar) is actually sucrose.

User Contributions:

1
sonia
a fantastic sample of reasach, the person who did this must be a true doc, i respect him because he is a G, i reaallii like the reashc go doc go doc
2
cbizzle
I was studying for a science test when i found this. you rock my worldddd

Comment about this article, ask questions, or add new information about this topic:


Carbohydrates forum