MASS WASTING

CONCEPT

The term mass wasting (sometimes called mass movement) encompasses a broad array of processes whereby earth material is transported down a slope by the force of gravity. It is related closely to weathering, which is the breakdown of minerals or rocks at or near Earth's surface through physical, chemical, or biological processes, and to erosion, the transport of material through a variety of agents, most of them flowing media, such as air or water. Varieties of mass wasting are classified according to the speed and force of the process, from extremely slow creep to very rapid, dramatic slide or fall. Examples of rapid mass wasting include landslides and avalanches, which can be the cause of widespread death and destruction when they occur in populated areas.

HOW IT WORKS

MOVING EARTH AND ROCKS

In discussing mass wasting, the area of principal concern is Earth's surface rather than its interior. Thus, mass wasting is related most closely to the realm of geomorphology, a branch of physical geology concerned with the study of landforms, with the forces and processes that have shaped them, and with the description and classification of various physical features on Earth. Though plate tectonics (which involves the movement of giant plates beneath the earth's surface) can influence mass wasting, plate tectonics entails interior processes that humans usually witness only indirectly, by seeing their effects. Mass wasting, on the other hand, often can be observed directly, particularly in its more rapid forms, such as rock fall.

There are three general processes whereby a piece of earth material can be moved from a high outcropping to the sea: weathering, mass wasting, or erosion. If mechanical, biological, or chemical processes act on the material, dislodging it from a larger sample of material (e.g., separating a rock from a boulder), it is an example of weathering, which is discussed later in this essay. Supposing that a rock has been broken apart by weathering, it may be moved further by mass-wasting processes, such as creep or fall. Pieces of rock swept away by a river in a valley below the outcropping and small bits of rock worn away by high winds are examples of erosion. Erosion and weathering are examined in separate essays within this book.

As for the relationships between erosion, weathering, and mass wasting, the lines are not clearly drawn. Some authors treat weathering and mass wasting as varieties of erosion, and some apply a strict definition of erosion as resulting only from flowing media. (In the physical sciences, fluid means anything that flows, not just liquids.) Weathering, mass wasting, and erosion also can be viewed as stages in a process, as described in the preceding paragraph. This broad array of approaches, while perhaps confusing, only serves to illustrate the fact that the earth sciences are relatively young compared with such ancient disciplines as astronomy and biology. Not all definitions in the earth sciences are, as it were, "written in stone."

WEATHERING

A mineral is a substance that occurs naturally, is usually inorganic, and typically has a crystalline structure. The term organic does not necessarily mean "living" rather, it refers to all carbon-containing compounds other than oxides, such as carbon dioxide, and carbonates, which are often found in Earth's rocks. A crystalline solid is one in which the constituent parts have a simple and definite geometric arrangement repeated in all directions.

Rocks, scientifically speaking, are simply aggregates or combinations of minerals or organic material or both, and weathering is the process whereby rocks and minerals are broken down into simpler materials. Weathering is the mechanism through which soil is formed, and therefore it is a geomorphologic process essential to the sustenance of life on Earth. There are three varieties of weathering: physical or mechanical, chemical, and biological.

THE THREE TYPES OF WEATHERING.

Physical or mechanical weathering involves such factors as gravity, friction, temperature, and moisture. Gravity, for instance, may cause a rock to drop from a height, such that it falls to the ground and breaks into pieces. If wind-borne sand blows constantly across a rock surface, the friction will have the effect of sandpaper, producing mechanical weathering. In addition, changes in temperature and moisture will cause expansion and contraction of materials, bringing about sometimes dramatic changes in their physical structure.

Chemical weathering not only is a separate variety of weathering but also is regarded as a second stage, one that follows physical weathering. Whereas physical changes are typically external, chemical changes affect the molecular structure of a substance, bringing about a rearrangement in the ways that atoms are bonded. Important processes that play a part in chemical weathering include acid reactions, hydrolysis (a reaction with water that results in the separation of a compound to form a new substance or substances), and oxidation. The latter can be defined as any chemical reaction in which oxygen is added to or hydrogen is removed from a substance.

An example of biological weathering occurs when a plant grows from a crevice in a rock. As the plant grows, it gradually forces the sides of the crevice apart even further, and it ultimately may tear the rock apart. Among the most notable agents of biological weathering are algae and fungi, which may be combined in a mutually beneficial organism called a lichen. (Reindeer moss is an example of a lichen.) Through a combination of physical and chemical processes, organisms ranging from lichen to large animals can wear away rock gradually.

PROPERTIES OF UNCONSOLIDATED MATERIAL

Regolith is a general term that describes a layer of weathered material that rests atop bedrock. It is unconsolidated, meaning that it is in pieces, like gravel, though much less uniform in size. Sand and soil, including soil mixed with loose rocks, are examples of regolith.

Every variety of unconsolidated material has its own angle of repose, or the maximum angle at which it can remain standing. Everyone who has ever attempted to build a sand castle at the beach has experienced angle of repose firsthand, perhaps without knowing it. Imagine that you are trying to build a sand castle with a steep roof. Dry sand would not be good for this purpose, because it is loose and has a tendency to flow easily. Much better would be moist sand, which can be shaped into a sharper angle, meaning that it has a higher angle of repose.

A certain amount of water gives sand surface tension, the same property that causes water to bead up on a table rather than lying flat. If too much water is added to the sand, however, the sand becomes saturated and will flow, a process called lateral spreading. Thus, to a point, the addition of water increases the angle of repose for sand, which is only about 34° when the sand is dry. (This is the angle of repose for sand in an hourglass.) On the other hand, piles of rocks may have an angle of repose as high as 45°. In practice, most aggregates of materials in nature have slopes less than their angle of repose, owing to the influence of wind and other erosive forces.

TYPES OF MASS WASTING

As noted earlier, there is some disagreement among writers in the geologic sciences regarding the types of mass wasting. Indeed, even the term mass wasting is not universal, since some writers refer to it as mass movement. Others do not even treat the subject as a category unto itself, preferring instead to address related concepts, such as weathering and erosion, as well as instances of mass wasting, such as avalanches and landslides.

AN AVALANCHE ON MOUNT MC KINLEY IN ALASKA. (© W. Bacon/Photo Researchers. Reproduced by permission.)
AN AVALANCHE ON MOUNT MC KINLEY IN ALASKA. (
© W. Bacon/Photo Researchers
. Reproduced by permission.)

For this reason, the classification of mass-wasting processes presented here is by no means universal and instead represents a composite of several schools of thought. Generally speaking, geologists and geomorphologists classify processes of mass wasting according to the rapidity with which they occur. Most sources recognize at least three types of mass wasting: flow, slide, and fall. Some sources include slump among the categories of relatively rapid mass-wasting process, as opposed to the slower, less dramatic (but ultimately more important) process known as creep. Some writers classify uplift and subsidence with mass wasting; however, in this book, uplift and subsidence are treated separately, in the Geomorphology essay.

REAL-LIFE APPLICATIONS

CREEP

Creep is the slow downward movement of regolith as a result of gravitational force. Before the initiation of the creeping process, the regolith is in what physicists call a condition of unstable equilibrium: it remains in place, yet a relatively small disturbance would be enough to dislodge

A MUDFLOW CAUSED BY HEAVY WINTER RAINS BRINGS DOWN THE HILLSIDE UNDER HOMES IN MILLBRAE, CALIFORNIA. (AP/Wide World Photos. Reproduced by permission.)
A MUDFLOW CAUSED BY HEAVY WINTER RAINS BRINGS DOWN THE HILLSIDE UNDER HOMES IN MILLBRAE, CALIFORNIA. (
AP/Wide World Photos
. Reproduced by permission.)
it. Though it is slow, creep can produce some of the most dramatic results over time. It can curve tree trunks at the base, break or overturn retaining walls, and cause objects from fence posts to utility poles to tombstones to be overturned.

Changes in temperature or moisture are among the leading factors that result in the disturbance of regolith. A change in either can cause material to expand or contract, and freezing or thawing may be enough to shake regolith from its position of unstable equilibrium. In fact, some geomorphologists cite a distinct mass-wasting process, known as solifluction, that occurs in the active layer of permafrost, which thaws in the summertime. Water also can provide lubrication or additional weight that assists the material in moving. One of the only causes of creep not associated with changes in temperature or moisture is the burrowing of small animals.

SLUMP AND SLIDE

Slump occurs when a mass of regolith slides over or creates a concave surface (one shaped like the inside of a bowl). The result is the formation of a small, crescent-shaped cliff, known as a scarp, at the upper end—rather like the crest of a wave. Soil flow takes place at the bottom end of the slump. One is likely to see slumps in any place where forces, whether man-made or natural, have graded material to a slope too steep for its angle of repose. This may happen along an interstate highway, where a road crew has cut the slope too sharply, or on a riverbank, where natural erosion has done its work.

Often, slump is classified as a variety of slide, in which material moves downhill in a fairly coherent mass (i.e., more or less in a section or group) along a flat or planar surface. These movements sometimes are called rock slides, debris slides, or, in common parlance, landslides. Among the most destructive types of mass wasting, they may be set in motion by earthquakes, which are caused by plate tectonic processes, or by hydrologic agents (i.e., excessive rain or melting snow and ice).

FLOW

When a less uniform, or more chaotic, mass of material moves rapidly downslope, it is called flow. Flow is divided into categories, depending on the amounts of water involved: granular flow (0-20% water) and slurry flow (20-40% water). Creep and solifluction often are classified as very slow forms of granular and slurry flow, respectively. In order of relative speed, these categories are as follows:

Granular Flow (0-20% Water)

  • Slowest: Creep
  • Slower: Earth flow
  • Faster: Grain flow
  • Fastest: Debris avalanche

Slurry Flow (20-40% Water)

  • Slow: Solifluction
  • Medium: Debris flow
  • Fast: Mudflow

Earth flow moves at a rate anywhere from 3.3 ft. (1 m) per year to 330 ft. (100 m) per hour. Grain flow can be nearly 60 mi. (100 km) per hour, and debris avalanche may achieve speeds of 250 mi. (400 km) per hour, making it extremely dangerous. Among types of slurry flow, debris flow is roughly analogous to earth flow, falling into a range from about 4 in. (10 cm) per year to 0.6 mi. (1 km) per hour. Mudflow is slightly faster than grain flow. If the water content is more than 40%, a slurry flow is considered a stream.

Earth flows involve fine-grained materials, such as clay or silt, and typically occur in humid areas after heavy rains or the melting of snow. Debris flows usually result from heavy rains as well and may start with slumps before flowing downhill, forming lobes with a surface broken by ridges and furrows. Grain flows can be caused by a small disturbance, which forces the dry, unconsolidated material rapidly downslope. Debris avalanches are commonly the result of earthquakes or volcanic eruptions.

Seismic disturbances or volcanic activity may cause the collapse of a mountain slope, sending debris avalanches moving swiftly even along the gentler slopes of the mountainside. Likewise, mudflows may be the result of volcanic activity, in which case they are known as lahars. In some situations, the material in a lahar is extremely hot. Mudflows tend to be highly fluid mixtures of sediment (material deposited at or near Earth's surface from a number of sources, most notably preexisting rock) and water and typically flow along valley floors.

FALL

Most other forms of mass wasting entail movement along slopes that are considerably less than 90°, whereas fall takes place at angles almost perpendicular to the ground. Anyone who has driven through a wide mountain area, with steep cliffs on either side, has seen signs that say "Watch for Falling Rock." These warnings, which appear regularly on the drive through the Rockies in Colorado or on highways across the Blue Ridge and Great Smoky mountains in the southern United States, indicate the threat of rock fall.

The mechanism behind rock fall is simple enough. When a rock at the top of a slope is in unstable equilibrium, it can be dislodged such that it either falls directly downward or bounces and rolls. Usually, the bottom of the slope or cliff contains accumulated talus, or fallen rock material. Freezing and thawing as well as the growth of plant roots may cause fall. The latter is not limited to rock fall: debris fall, which is closely related, includes soil, vegetation, and regolith as well as rocks.

MASS WASTING AND NATURAL DISASTERS

Among the most dramatic and well-known varieties of mass wasting are avalanches, a variety of flow, and landslides, which (as their name suggests) are a type of slide. These can result, and have resulted, in enormous loss of life and property. Some notable modern occurrences of mass wasting, and the type of movement involved, are listed below. With each incident, the approximate number of fatalities is shown in parentheses.

  • China, 1920: Landslide caused by an earthquake (200,000)
  • Peru, 1970: Debris avalanche related to an earthquake (70,000)
  • Colombia, 1985: Mudflow related to a volcanic eruption (23,000)
  • Soviet Union, 1949: Landslide caused by an earthquake (12,000-20,000)
  • Italy and Austria, 1916: Landslide (10,000)
  • Peru, 1962: Landslide (4,000-5,000)
  • Italy, 1963: Landslide (2,000)
  • Japan, 1945: Landslide caused by a flood (1,200)
  • Ecuador, 1987: Landslide related to an earthquake (1,000)
  • Austria, 1954: Landslide (200)

THE ROLE OF PLATE TECTONICS

Note how many times an instance of mass wasting was either caused by or "related to" (meaning that geologists could not establish a full causal relationship) volcanic or seismic activity. Both, in turn, are the result of plate movement in most instances, and thus it is not surprising that several of the locales noted here are either at plate margins or in mountainous regions where plate tectonic and other processes are at work. (For more on this subject, see the entries Plate Tectonics and Mountains.)

To set mass wasting into motion, it is necessary to have a steep slope and some type of force to remove material from its position of unstable equilibrium. Plate tectonic processes provide both. Not only does an earthquake, for instance, jar rocks loose from the upper portion of a slope, but the movement of plates also helps create steep slopes, for example, the collision of the Indo-Australian and Eurasian belts that produced the Himalayas.

Some of the most vigorous plate tectonic activity occurs underwater, and, likewise, there are remarkable manifestations of mass wasting beneath the seas. Off Moss Landing, a research facility that serves a consortium of state universities in northern California, is an underwater canyon more than 0.6 mi. (1 km) deep. At one time, Monterey Canyon was thought to be the result of erosion by a river flowing into the ocean; however, today it is believed to be the result of underwater mass wasting.

DETECTING AND PREVENTING MASS WASTING

The dramatic instances of mass wasting discussed here hardly require any effort at detection. Their effect is obvious and, to those unfortunate enough to be nearby, inescapable. Other types of mass wasting occur so slowly that they do not invite immediate detection. This can be unfortunate, because in some cases slow mass wasting is a harbinger of much more rapid movements to follow.

A dwelling atop a hill is subject to enormous gravitational force, and the more massive the dwelling, the greater the pull of gravity. (Weight is, after all, nothing but gravitational force.) If a homeowner adds a swimming pool or other items that contribute to the weight of the dwelling, it only increases the chances that it may experience mass wasting. Heavy rains can bring so much water that it saturates the soil, reducing its surface tension and causing it to slide—as occurred, for instance, in the area around Malibu, California, during the late 1990s.

The California mud slides and landslides are a dramatic example of mass wasting, but more often than not mass wasting takes the form of creep, which is detectable only over a matter of years. When creep occurs, the upper layer of soil moves, while the layer below remains stationary. One way to keep the upper layer in place is to plant vegetation that will put down roots deep enough to hold the soil.

This may create unintended consequences. During the 1930s, New Deal officials imported kudzu plants from China, intending to protect the hillsides of the American South from creep and erosion. The kudzu protected the slopes, but as it turned out, this voracious plant had a tendency to creep as well. Before communities began taking steps to eradicate it, or at least push it back, in the 1970s, kudzu seemingly threatened to cover the entire southern United States.

To prevent some of the more dramatic varieties of mass wasting, such as landslides in a residential area, a homeowner or group of homeowners may commission an engineer's study. The engineer can test the material of the slope, measure the stresses acting on it, and perform other calculations to predict the likelihood that a slope will succumb to a given amount of force. For this reason, zoning laws in areas with steep slopes are typically strict. These laws are geared toward preventing homeowners and builders from erecting structures likely to create a threat of mass wasting in a period of heavy rains.

WHERE TO LEARN MORE

Abbott, Patrick. Natural Disasters. Dubuque, IA: WilliamC. Brown Publishers, 1996.

Allen, Missy, and Michel Peissel. Dangerous Natural Phenomena. New York: Chelsea House, 1993.

Armstrong, Betsy R., and Knox Williams. The Avalanche Book. Golden, CO: Fulcrum, 1986.

Goodwin, Peter. Landslides, Slumps, and Creeps. New York: Franklin Watts, 1997.

Gore, Pamela. "Mass Wasting" (Web site). <http://www.gpc.peachnet.edu/~pgore/geology/geo101/masswasting.html>.

Mass Wasting (Web site). <http://www.es.ucsc.edu/~jsr/EART10/Lectures/HTML/lecture.07.html>.

"Mass Wasting Features of North Dakota." North Dakota State University (Web site). <http://www.ndsu.nodak.edu/nd_geology/nd_mwast/index_mw.htm>.

Murck, Barbara Winifred, Brian J. Skinner, and StephenC. Porter. Dangerous Earth: An Introduction to Geologic Hazards. New York: John Wiley, 1996.

Nelson, Stephen A. Mass-Wasting and Mass-Wasting Processes. Tulane University (Web site). <http://www.tulane.edu/~sanelson/geol204/masswastproc.htm>.

Weathering and Mass Wasting Learning Module (Web site). <http://home.aol.com/rhaberlin/mwmod.htm>.

KEY TERMS

ANGLE OF REPOSE:

The maximum slope at which a relatively large sample of unconsolidated material can remain standing. Often, the addition of water increases the angle of repose, up to the point at which the material becomes saturated.

AVALANCHE:

See flow.

CREEP:

A form of mass wasting involving the slow downward movement of regolith as a result of gravitational force.

EROSION:

The movement of soil and rock due to forces produced by water, wind, glaciers, gravity, and other influences. In most cases, a fluid medium, such as air or water, plays a part.

FALL:

A form of mass wasting in which rock or debris moves downward along extremely steep angles.

FLOW:

A form of mass wasting in which a body of material that is not uniform moves rapidly downslope. Flow is divided into categories, depending on the amounts of water involved: granular flow (0-20% water) and slurry flow (20-40%water). An avalanche is an example of flow and may involve either rock (granular) or snow (slurry).

FLUID:

In the physical sciences, the term fluid refers to any substance that flows and therefore has no definite shape—that is, both liquids and gases. In the earth sciences, occasionally substances that appear to be solid, for example, ice in glaciers, are, in fact, flowing slowly.

GEOMORPHOLOGY:

An area of physical geology concerned with the study of landforms, with the forces and processes that have shaped them, and with the description and classification of various physical features on Earth.

LANDSLIDE:

See slide.

LITHOSPHERE:

The upper layer of Earth's interior, including the crust and the brittle portion at the top of the mantle.

KEY TERMS

MASS WASTING:

The transfer of earth material down slopes by processes that include creep, slump, slide, flow, and fall. Also known as mass movement.

PLATE MARGINS:

Boundaries betweenplates.

PLATE TECTONICS:

The name both of a theory and of a specialization of tectonics. As an area of study, plate tectonics deals with the large features of the lithosphere and the forces that shape them. As atheory, it explains the processes that have shaped Earth in terms of plates and their movement.

PLATES:

Large, movable segments of the lithosphere.

REGOLITH:

A general term describing a layer of weathered material that rests atopbedrock.

SEDIMENT:

Material deposited at or near Earth's surface from a number of sources, most notably preexisting rock.

SLIDE:

A variety of mass wasting in which material moves downhill in a fairly coherent mass (i.e., more or less in a section or group) along a flat or planar surface.

SLUMP:

A form of mass wasting that occurs when a mass of regolith slides over or creates a concave surface (one shaped like the inside of a bowl).

SURFACE TENSION:

An attractive force exerted by molecules in the interior of a liquid on molecules at the exterior. This force draws the material inward such that it occupies less than its maximum horizontal area. The surface tension of water ishigh, causing it to bead on most surfaces.

UNSTABLE EQUILIBRIUM:

A situation in which an object remains in place, yet a relatively small disturbance would be enough to dislodge it.

WEATHERING:

The breakdown of rocks and minerals at or near the surface of Earth due to physical, chemical, or biological processes.

User Contributions:

Report this comment as inappropriate
Nov 21, 2010 @ 7:07 am
weathering means not only the breakdown or disintegration, but also the decomposition of rocks and minerals at or near the surface of Earth due to physical, chemical, or biological processes.
Please give the concept of different types of mass wasting with more and specific and separate diagrams and photos.

Comment about this article, ask questions, or add new information about this topic:

CAPTCHA


Mass Wasting forum