Acoustics - Real-life applications



Decibel Levels

For measuring the intensity of a sound as experienced by the human ear, we use a unit other than the watt per square meter, because ears do not respond to sounds in a linear, or straight-line, progression. If the intensity of a sound is doubled, a person perceives a greater intensity, but nothing approaching twice that of the original sound. Instead, a different system—known in mathematics as a logarithmic scale—is applied.

In measuring the effect of sound intensity on the human ear, a unit called the decibel (abbreviated dB) is used. A sound of minimal audibility (10 −12 W/m 2 ) is assigned the value of 0 dB, and 10 dB is 10 times as great—10 −11 W/m 2 . But 20 dB is not 20 times as intense as 0 dB; it is 100 times as intense, or 10 −10 W/m 2 . Every increase of 10 dB thus indicates a tenfold increase in intensity. Therefore, 120 dB, the maximum decibel level that a human ear can endure without experiencing damage, is not 120 times as great as the minimal level for audibility, but 10 12 (1 trillion) times as great—equal to 1 W/m 2 , referred to above as the highest safe intensity level.

Of course, sounds can be much louder than 120 dB: a rock band, for instance, can generate sounds of 125 dB, which is 5 times the maximum safe decibel level. A gunshot, firecracker, or a jet—if one is exposed to these sounds at a sufficiently close proximity—can be as high as 140 dB, or 20 times the maximum safe level. Nor is 120 dB safe for prolonged periods: hearing experts indicate that regular and repeated exposure to even 85 dB (5 less than a lawn mower) can cause permanent damage to one's hearing.

Production of Sound Waves

MUSICAL INSTRUMENTS.

Sound waves are vibrations; thus, in order to produce sound, vibrations must be produced. For a stringed instrument, such as a guitar, harp, or piano, the strings must be set into vibration, either by the musician's fingers or the mechanism that connects piano keys to the strings inside the case of the piano.

In other woodwind instruments and horns, the musician causes vibrations by blowing into the mouthpiece. The exact process by which the vibrations emerge as sound differs between woodwind instruments, such as a clarinet or saxophone on the one hand, and brass instruments, such as a trumpet or trombone on the other. Then there is a drum or other percussion instrument, which produces vibrations, if not musical notes.

ELECTRONIC AMPLIFICATION.

Sound is a form of energy: thus, when an automobile or other machine produces sound incidental to its operation, this actually represents energy that is lost. Energy itself is conserved, but not all of the energy put into the machine can ever be realized as useful energy; thus, the automobile loses some energy in the form of sound and heat.

The fact that sound is energy, however, also means that it can be converted to other forms of energy, and this is precisely what a microphone does: it receives sound waves and converts them to electrical energy. These electrical signals are transmitted to an amplifier, and next to a loudspeaker, which turns electrical energy back into sound energy—only now, the intensity of the sound is much greater.

Inside a loudspeaker is a diaphragm, a thin, flexible disk that vibrates with the intensity of the sound it produces. When it pushes outward, the diaphragm forces nearby air molecules closer together, creating a high-pressure region around the loudspeaker. (Remember, as stated earlier, that sound is a matter of fluctuations in pressure.) The diaphragm is then pushed backward in response, freeing up an area of space for the air molecules. These, then, rush toward the diaphragm, creating a low-pressure region behind the high-pressure one. The loudspeaker thus sends out alternating waves of high and low pressure, vibrations on the same frequency of the original sound.

THE HUMAN VOICE.

As impressive as the electronic means of sound production are (and of course the description just given is highly simplified), this technology pales in comparison to the greatest of all sound-producing mechanisms: the human voice. Speech itself is a highly complex physical process, much too involved to be discussed in any depth here. For our present purpose, it is important only to recognize that speech is essentially a matter of producing vibrations on the vocal cords, and then transmitting those vibrations.

Before a person speaks, the brain sends signals to the vocal cords, causing them to tighten. As speech begins, air is forced across the vocal cords, and this produces vibrations. The action of the vocal cords in producing these vibrations is, like everything about the miracle of speech, exceedingly involved: at any given moment as a person is talking, parts of the vocal cords are opened, and parts are closed.

The sound of a person's voice is affected by a number of factors: the size and shape of the sinuses and other cavities in the head, the shape of the mouth, and the placement of the teeth and tongue. These factors influence the production of specific frequencies of sound, and result in differing vocal qualities. Again, the mechanisms of speech are highly complicated, involving action of the diaphragm (a partition of muscle and tissue between the chest and abdominal cavities), larynx, pharynx, glottis, hard and soft palates, and so on. But, it all begins with the production of vibrations.

Propagation: Does It Make a Sound?

As stated in the introduction, acoustics is concerned with the production, transmission (sometimes called propagation), and reception of sound. Transmission has already been examined in terms of the speed at which sound travels through various media. One aspect of sound transmission needs to be reiterated, however: for sound to be propagated, there must be a medium.

There is an age-old "philosophical" question that goes something like this: If a tree falls in the woods and there is no one to hear it, does it make a sound? In fact, the question is not a matter of philosophy at all, but of physics, and the answer is, of course, "yes." As the tree falls, it releases energy in a number of forms, and part of this energy is manifested as sound waves.

Consider, on the other hand, this rephrased version of the question: "If a tree falls in a vacuum—an area completely devoid of matter, including air—does it make a sound?" The answer is now a qualified "no": certainly, there is a release of energy, as before, but the sound waves cannot be transmitted. Without air or any other matter to carry the waves, there is literally no sound.

Hence, there is a great deal of truth to the tagline associated with the 1979 science-fiction film Alien : "In space, no one can hear you scream." Inside an astronaut's suit, there is pressure and an oxygen supply; without either, the astronaut would perish quickly. The pressure and air inside the suit also allow the astronaut to hear sounds within the suit, including communications via microphone from other astronauts. But, if there were an explosion in the vacuum of deep space outside the spacecraft, no one inside would be able to hear it.

Reception of Sound

RECORDING.

Earlier the structure of electronic amplification was described in very simple terms. Some of the same processes—specifically, the conversion of sound to electrical energy—are used in the recording of sound. In sound recording, when a sound wave is emitted, it causes vibrations in a diaphragm attached to an electrical condenser. This causes variations in the electrical current passed on by the condenser.

These electrical pulses are processed and ultimately passed on to an electromagnetic "recording head." The magnetic field of the recording head extends over the section of tape being recorded: what began as loud sounds now produce strong magnetic fields, and soft sounds produce weak fields. Yet, just as electronic means of sound production and transmission are still not as impressive as the mechanisms of the human voice, so electronic sound reception and recording technology is a less magnificent device than the human ear.

HOW THE EAR HEARS.

As almost everyone has noticed, a change in altitude (and, hence, of atmospheric pressure) leads to a strange "popping" sensation in the ears. Usually, this condition can be overcome by swallowing, or even better, by yawning. This opens the Eustachian tube, a passageway that maintains atmospheric pressure in the ear. Useful as it is, the Eustachian tube is just one of the human ear's many parts.

The "funny" shape of the ear helps it to capture and amplify sound waves, which passthrough the ear canal and cause the eardrum tovibrate. Though humans can hear sounds over amuch wider range, the optimal range of audibility is from 3,000 to 4,000 Hz. This is because thestructure of the ear canal is such that sounds in this frequency produce magnified pressure fluctuations. Thanks to this, as well as other specific properties, the ear acts as an amplifier of sounds.

Beyond the eardrum is the middle ear, an intricate sound-reception device containing some of the smallest bones in the human body—bones commonly known, because of their shapes, as the hammer, anvil, and stirrup. Vibrations pass from the hammer to the anvil to the stirrup, through the membrane that covers the oval window, and into the inner ear.

Filled with liquid, the inner ear contains the semicircular canals responsible for providing a sense of balance or orientation: without these, a person literally "would not know which way is up." Also, in the inner ear is the cochlea, an organ shaped like a snail. Waves of pressure from the fluids of the inner ear are passed through the cochlea to the auditory nerve, which then transmits these signals to the brain.

The basilar membrane of the cochlea is a particularly wondrous instrument, responsible in large part for the ability to discriminate between sounds of different frequencies and intensities. The surface of the membrane is covered with thousands of fibers, which are highly sensitive to disturbances, and it transmits information concerning these disturbances to the auditory nerve. The brain, in turn, forms a relation between the position of the nerve ending and the frequency of the sound. It also equates the degree of disturbance in the basilar membrane with the intensity of the sound: the greater the disturbance, the louder the sound.

WHERE TO LEARN MORE

Adams, Richard C. and Peter H. Goodwin. Engineering Projects for Young Scientists. New York: Franklin Watts, 2000.

Beiser, Arthur. Physics , 5th ed. Reading, MA: Addison-Wesley, 1991.

Friedhoffer, Robert. Sound. Illustrated by Richard Kaufman and Linda Eisenberg; photographs by Timothy White. New York: F. Watts, 1992.

Gardner, Robert. Science Projects About Sound. Berkeley Heights, NJ: Enslow Publishers, 2000.

Internet Resources for Sound and Light (Web site). <http://electro.sau.edu/SLResources.html> (April 25, 2001).

"Music and Sound Waves" (Web site). <http://www.silcom.com/~aludwig/musicand.htm> (April 28, 2001).

Oxlade, Chris. Light and Sound. Des Plaines, IL: Heinemann Library, 2000.

Physics Tutorial System: Sound Waves Modules (Web site). <http://csgrad.cs.vt.edu/~chin/chin_sound.html> (April 25, 2001).

"Sound Waves and Music." The Physics Classroom (Web site). <http://www.glenbrook.k12.il.us/gbssci/phys/Class/sound/soundtoc.html> (April 28, 2001).

"What Are Sound Waves?" (Web site). <http://rustam.uwp.edu/GWWM/sound_waves.html> (April 28, 2001).



Also read article about Acoustics from Wikipedia

User Contributions:

Comment about this article, ask questions, or add new information about this topic: