Digestion - How it works



Nutrients

For digestion to occur, of course, it is necessary first to have something to digest—namely, nutrients. What follows is a cursory overview of nutrients and nutrition, subjects covered in much more depth within the essay of that name. Nutrients include proteins, carbohydrates, fats, minerals, and vitamins. In addition to these nutrients, animal life requires other materials, not usually considered nutrients, which include water, oxygen, and something that greatly aids the process of food digestion and elimination of wastes: fiber.

PROTEINS AND CARBOHYDRATES.

Proteins are large molecules built from long chains of amino acids, which are organic compounds made of carbon, hydrogen, oxygen, nitrogen, and (in some cases) sulfur-bonded in characteristic formations. Proteins serve the functions of promoting normal growth, repairing damaged tissue, contributing to the body's immune system, and making enzymes. (An enzyme is a protein material that speeds up chemical reactions in the bodies of plants and animals.) Good examples of dietary proteins include eggs, milk, cheese, and other dairy products. Incomplete proteins, or ones lacking essential amino acids—those amino acids that are not produced by the human body—include peas, beans, lentils, nuts, and cereal grains.

Carbohydrates are compounds that consist of carbon, hydrogen, and oxygen. Their primary function in the body is to supply energy. When a person ingests more carbohydrates than his or her body needs at the moment, the body converts the excess into a compound known as glycogen. It then stores the glycogen in the liver and muscle tissues, where it remains, a potential source of energy for the body to use in the future, though if it is not used soon, it may be stored as fat. The carbohydrate group comprises sugars, starches, cellulose (a type of fiber), and various other chemically related substances.

LIPIDS, VITAMINS, AND MINERALS.

Lipids include all fats and oils and are distinguished by the fact that they are soluble (i.e., capable of being dissolved) in oily or fatty substances but not in water. In the body, lipids supply energy much as carbohydrates do, only much more slowly. Lipids also protect the organs from shock and damage and provide the body with insulation from cold, toxins, and other threats. Processed, saturated fats (fats that have been enhanced artificially to make them more firm) are extremely unhealthy, and consumption of some types of animal fat (e.g., pork fat) is also inadvisable. On the other hand, vegetable fats, such as those in avocados and olive oil, as well as the animal fats in such fish as tuna, mackerel, and salmon can be highly beneficial.

Vitamins are organic substances that, in extremely small quantities, are essential to the nutrition of most animals and some plants. In particular, they work with enzymes in regulating metabolic processes—that is, the chemical processes by which nutrients are broken down and converted into energy or used in the construction of new tissue or other material in the body. Vitamins do not in themselves provide energy, however, and thus they do not qualify as a form of nutrition. Much the same is true of minerals, except that these are inorganic substances, meaning that they do not contain chemical compounds made of carbon and hydrogen.

The Digestive System

To supply the body with the materials it needs for energy and the building of new tissue, nutrients have to pass through the digestive system. The latter is composed of organs (an organ being a group of tissues and cells, organized into a particular structure, that performs a specific function within an organism) and other structures through which nutrients move. The nutrients pass first through the mouth and then through the esophagus, stomach, small intestine, and large intestine, or colon. Collectively, these structures are known as the alimentary canal.

Nutrients advance through the alimentary canal to the stomach and small intestine, and waste materials continue from the small intestine to the colon (large intestine) and anus. Along the way, several glands play a role. A gland is a cell or group of cells that filters material from the blood, processes that material, and secretes it either for use again in the body or to be eliminated as waste. Among the glands that play a part in the digestive process are the salivary glands, liver, gallbladder, and pancreas. (The last three are examples of glands that are also organs.) The glands with a role in digestion secrete digestive juices containing enzymes that break down nutrients chemically into smaller molecules that are absorbed more easily by the body. There are also hormones involved in digestion-there are, for example, glandular cells in the lining of the stomach that make the hormone gastrin.

FROM THE MOUTH TO THE STOMACH.

The first stage of digestion is ingestion, in which food is taken into the mouth and then broken down into smaller pieces by the chewing action of the teeth. To facilitate movement of the food through the mouth and along the tongue, it is necessary for saliva to be present. Usually, the sensations of sight, taste, and smell associated with food set in motion a series of neural responses that induce the formation of saliva by the salivary glands in the mouth. Amylase, an enzyme in the saliva, begins the process of breaking complex carbohydrates into simple sugars. (The terms simple and complex in this context refer to chemical structures.)

By the time it is ready to be swallowed, food is in the form of a soft mass known as a bolus. The action of swallowing pulls the food down through the pharynx, or throat, and into the esophagus, a tube that extends from the bottom of the throat to the top of the stomach. (Note that for the most part, we are using human anatomy as a guide, but many aspects of the digestive process described here also apply to other higher animals, particularly mammals.) The esophagus does not take part in digestion but rather performs the function of moving the bolus into the stomach.

A wavelike muscular motion termed peristalsis, which consists of alternating contractions and relaxations of the smooth muscles lining the esophagus, moves the bolus through this passage. At the place where the esophagus meets the stomach, a powerful muscle called the esophageal sphincter acts as a valve to keep food and stomach acids from flowing back into the esophagus and mouth. (Although the most well-known sphincter muscle in the body is the one surrounding the anus, sometimes known simply as " the sphincter," in fact, sphincter is a general term for a muscle that surrounds, and is able to control the size of, a bodily opening.)

FROM THE STOMACH TO THE SMALL INTESTINE.

Chemical digestion begins in the stomach, a large, hollow, pouchlike muscular organ. While food is still in the mouth, the stomach begins its production of gastric juice, which contains hydrochloric acid and pepsin, an enzyme that digests protein. Gastric juice is the material that breaks down the food.

A SIXTEENTH-CENTURY ANATOMICAL DIAGRAM OF THE INTERNAL ORGANS, SHOWING THE STOMACH, LIVER, INTESTINE, AND GALLBLADDER. (© Corbis. Reproduced by permission.)
A SIXTEENTH - CENTURY ANATOMICAL DIAGRAM OF THE INTERNAL ORGANS , SHOWING THE STOMACH , LIVER , INTESTINE , AND GALLBLADDER . (
© Corbis
. Reproduced by permission. )
Once nerves in the cheeks and tongue are stimulated by the food, they send messages to the brain, which, in turn, alerts nerves in the stomach wall, stimulating the secretion of gastric juice before the bolus itself arrives in the stomach. Once the bolus touches the stomach lining, it triggers a second release of gastric juice, along with mucus that helps protect the stomach lining from the action of the hydrochloric acid. Three layers of powerful stomach muscles churn food into a thick liquid called chyme, which is pumped gradually through the pyloric sphincter, which connects the stomach small intestine.

THE SMALL INTESTINE.

The names of the small and large intestines can be confusing, rather like those of Upper and Lower Egypt in ancient history. In both cases, the adjectives seem to refer to one thing but actually refer to something else entirely. Thus, it so happens that Upper Egypt was south of Lower Egypt (because it was "upper" in elevation, not latitude), while the small intestine is, in fact, much longer than the large intestine. The reason is that small refers to its diameter rather than its length: though it is about 23 ft. (7 m) long, the small intestine is only 1 in. (2.5 cm) in diameter, while the large intestine, only 5 ft. (1.5 m) in length, is 3 in. (7.6 cm) across.

The small intestine, which connects the stomach and large intestine, is in three sections: the duodenum, jejunum, and ileum. About 1 ft. (0.3 m) long, the duodenum breaks down chyme from the stomach with the aid of the pancreas and gallbladder. The pancreas, a large gland located below the stomach, secretes pancreatic juice, which contains three enzymes that break down carbohydrates, fats, and proteins, into the duodenum through the pancreatic duct. The gallbladder empties bile, a yellowish or greenish fluid from the liver, into the duodenum when chyme enters that portion of the intestine. Although bile does not contain enzymes, it does have bile salts that help dissolve fats.

Digested carbohydrates, fats, proteins, and most of the vitamins, minerals, and iron in food are absorbed in the jejunum, which is about 4 ft. (1.2 m) long. Aiding this absorption are up to five million tiny finger-like projections called villi, which greatly increase the surface area of the small intestine, thus accelerating the rate at which nutrients are absorbed into the bloodstream. The remainder of the small intestine is taken up by the ileum, which is smaller in diameter and has thinner walls than the jejunum. It is the final site for absorption of some vitamins and other nutrients, which enter the circulatory system in plasma, a watery liquid in which red blood cells also are suspended.

As it moves through the circulatory system, plasma takes with it amino acids, enzymes, glycerol (a form of alcohol found in fats), and fatty acids, which it directs to the body's tissues for energy and growth. Plasma also contains waste products from the breakdown of proteins, including creatinine, uric acid, and ammonium salts. These constituents are moved to the kidneys, where they are filtered from the blood and excreted in the urine. But, of course, urine is not the only waste product excreted by the body; there is also the solid waste, processed through the large intestine, or colon.

THE LARGE INTESTINE AND BEYOND.

Like the small intestine, the large intestine is in segments. It rises up on the right side of the body (the ascending colon), crosses over to the other side underneath the stomach (the transverse colon), descends on the left side, (the descending colon), and forms an S shape (the sigmoid colon) before reaching the rectum and anus. In addition to its function of pumping solid waste, the large intestine removes water from the waste products—water that, when purified, will be returned to the bloodstream. In addition, millions of bacteria in the large intestine help produce certain B vitamins and vitamin K, which are absorbed into the bloodstream along with the water.

After leaving the sigmoid colon, waste passes through the muscular rectum and then the anus, the last point along the alimentary canal. In all, the movement of food through the entire length of the alimentary tract takes from 15 to 30 hours, with the majority of that time being taken up by activity in the colon. Food generally spends about three to five hours in the stomach, another four to five hours in the small intestine, and between five and 25 hours in the large intestine.

The transit time, or the amount of time it takes for food to move through the system, is a function of diet: for a vegetarian who eats a great deal of fiber, it will be on the short end, while for a meat eater who has just consumed a dinner of prime rib, it will take close to the maximum time. People who eat diets heavy in red meat or junk foods are also likely to experience a buildup, over time, of partially digested material on the linings of their intestines. Obviously, this is not a healthy situation, and to turn it around, a person may have to change his or her diet and perhaps even undergo some sort of colon-cleansing program. There is an easy way to test transit time in one's system: simply eat a large serving of corn or red beets, and measure how long it takes for these to fully work their way through the digestive system.



Also read article about Digestion from Wikipedia

User Contributions:

Comment about this article, ask questions, or add new information about this topic: