Electromagnetic Spectrum - How it works



Electromagnetism

The ancient Romans observed that a brushed comb would attract particles, a phenomenon now known as static electricity and studied within the realm of electrostatics in physics. Yet, the Roman understanding of electricity did not extend any further, and as progress was made in the science of physics—after a period of more than a thousand years, during which scientific learning in Europe progressed very slowly—it developed in areas that had nothing to do with the strange force observed by the Romans.

The fathers of physics as a serious science, Galileo Galilei (1564-1642) and Sir Isaac Newton (1642-1727), were concerned with gravitation, which Newton identified as a fundamental force in the universe. For nearly two centuries, physicists continued to believe that there was only one type of force. Yet, as scientists became increasingly aware of molecules and atoms, anomalies began to arise—in particular, the fact that gravitation alone could not account for the strong forces holding atoms and molecules together to form matter.

FOUNDATIONS OF ELECTROMAGNETIC THEORY.

At the same time, a number of thinkers conducted experiments concerning the nature of electricity and magnetism, and the relationship between them. Among these were several giants in physics and other disciplines—including one of America's greatest founding fathers. In addition to his famous (and highly dangerous) experiment with lightning, Benjamin Franklin (1706-1790) also contributed the names "positive" and "negative" to the differing electrical charges discovered earlier by French physicist Charles Du Fay (1698-1739).

In 1785, French physicist and inventor Charles Coulomb (1736-1806) established the basic laws of electrostatics and magnetism. He maintained that there is an attractive force that, like gravitation, can be explained in terms of the inverse of the square of the distance between objects. That attraction itself, however, resulted not from gravity, but from electrical charge, according to Coulomb.

A few years later, German mathematician Johann Karl Friedrich Gauss (1777-1855) developed a mathematical theory for finding the magnetic potential of any point on Earth, and his contemporary, Danish physicist Hans Christian Oersted (1777-1851), became the first scientist to establish the existence of a clear relationship between electricity and magnetism. This led to the foundation of electromagnetism, the branch of physics devoted to the study of electrical and magnetic phenomena.

French mathematician and physicist André Marie Ampère (1775-1836) concluded that magnetism is the result of electricity in motion, and, in 1831, British physicist and chemist Michael Faraday (1791-1867) published his theory of electromagnetic induction. This theory shows how an electrical current in one coil can set up a current in another through the development of a magnetic field. This enabled Faraday to develop the first generator, and for the first time in history, humans were able to convert mechanical energy systematically into electrical energy.

MAXWELL AND ELECTROMAGNETIC FORCE.

A number of other figures contributed along the way; but, as yet, no one had developed a "unified theory" explaining the relationship between electricity and magnetism. Then, in 1865, Scottish physicist James Clerk Maxwell (1831-1879) published a groundbreaking paper, "On Faraday's Lines of Force," in which he outlined a theory of electromagnetic force—the total force on an electrically charged particle, which is a combination of forces due to electrical and/or magnetic fields around the particle.

Maxwell had thus discovered a type of force in addition to gravity, and this reflected a "new" type of fundamental interaction, or a basic mode by which particles interact in nature. Newton had identified the first, gravitational interaction, and in the twentieth century, two other forms of fundamental interaction—strong nuclear and weak nuclear—were identified as well.

In his work, Maxwell drew on the studies conducted by his predecessors, but added a new statement: that electrical charge is conserved. This statement, which did not contradict any of the experimental work done by the other physicists, was based on Maxwell's predictions regarding what should happen in situations of electromagnetism; subsequent studies have supported his predictions.

Electromagnetic Radiation

So far, what we have seen is the foundation for modern understanding of electricity and magnetism. This understanding grew enormously in the late nineteenth and early twentieth centuries, thanks both to the theoretical work of physicists, and the practical labors of inventors such as Thomas Alva Edison (1847-1931) and Serbian-American electrical engineer Nikola Tesla (1856-1943). But our concern in the present context is with electromagnetic radiation, of which the waves on the electromagnetic spectrum are a particularly significant example.

Energy can travel by conduction or convection, two principal means of heat transfer. But the energy Earth receives from the Sun—the energy conveyed through the electromagnetic spectrum—is transferred by another method, radiation. Whereas conduction of convection can only take place where there is matter, which provides a medium for the energy transfer, radiation requires no medium. Thus, electromagnetic energy passes from the Sun to Earth through the vacuum of empty space.

ELECTROMAGNETIC WAVES.

The connection between electromagnetic radiation and electromagnetic force is far from obvious. Even today, few people not scientifically trained understand that there is a clear relationship between electricity and magnetism—let alone a connection between these and visible light. The breakthrough in establishing that connection can be attributed both to Maxwell and to German physicist Heinrich Rudolf Hertz (1857-1894).

Maxwell had suggested that electromagnetic force carried with it a certain wave phenomenon, and predicted that these waves traveled at a certain speed. In his Treatise on Electricity and Magnetism (1873), he predicted that the speed of these waves was the same as that of light—186,000 mi (299,339 km) per second—and theorized that the electromagnetic interaction included not only electricity and magnetism, but light as well. A few years later, while studying the behavior of electrical currents, Hertz confirmed Maxwell's proposition regarding the wave phenomenon by showing that an electrical current generated some sort of electromagnetic radiation.

In addition, Hertz found that the flow of electrical charges could be affected by light under certain conditions. Ultraviolet light had already been identified, and Hertz shone an ultraviolet beam on the negatively charged side of a gap in a

THE HUBBLE SPACE TELESCOPE INCLUDES AN ULTRAVIOLET LIGHT INSTRUMENT CALLED THE GODDARD HIGH RESOLUTION SPECTROGRAPH THAT IT IS CAPABLE OF OBSERVING EXTREMELY DISTANT OBJECTS. (Photograph by Roger Ressmeyer/Corbis. Reproduced by permission.)
T HE H UBBLE S PACE T ELESCOPE INCLUDES AN ULTRAVIOLET LIGHT INSTRUMENT CALLED THE G ODDARD H IGH R ESOLUTION S PECTROGRAPH THAT IT IS CAPABLE OF OBSERVING EXTREMELY DISTANT OBJECTS . (Photograph by
Roger Ressmeyer/Corbis
. Reproduced by permission.)
current loop. This made it easier for an electrical spark to jump the gap. Hertz could not explain this phenomenon, which came to be known as the photoelectric effect. Indeed, no one else could explain it until quantum theory was developed in the early twentieth century. In the meantime, however, Hertz's discovery of electromagnetic waves radiating from a current loop led to the invention of radio by Italian physicist and engineer Guglielmo Marconi (1874-1937) and others.

Light: Waves or Particles?

At this point, it is necessary to jump backward in history, to explain the progression of scientists' understanding of light. Advancement in this areatook place over a long period of time: at the endof the first millennium A.D. , the Arab physicist Alhasen (Ibn al-Haytham; c. 965-1039) showedthat light comes from the Sun and other self-illuminated bodies—not, as had been believed up tothat time—from the eye itself. Thus, studies inoptics, or the study of light and vision, were—compared to understanding of electromagnetismitself—relatively advanced by 1666, when Newton discovered the spectrum of colors in light. AsNewton showed, colors are arranged in a sequence, and white light is a combination of allcolors.

Newton put forth the corpuscular theory of light—that is, the idea that light is made up of particles—but his contemporary Christiaan Huygens (1629-1695), a Dutch physicist and astronomer, maintained that light appears in the form of a wave. For the next century, adherents of Newton's corpuscular theory and of Huygens's wave theory continued to disagree. Physicists on the European continent began increasingly to accept wave theory, but corpuscular theory remained strong in Newton's homeland.

Thus, it was ironic that the physicist whose work struck the most forceful blow against corpuscular theory was himself an Englishman: Thomas Young (1773-1829), who in 1801 demonstrated interference in light. Young directed a beam of light through two closely spaced pinholes onto a screen, reasoning that if light truly were made of particles, the beams would project two distinct points onto the screen. Instead, what he saw was a pattern of interference—a wave phenomenon.

By the time of Hertz, wave theory had become dominant; but the photoelectric effect also exhibited aspects of particle behavior. Thus, for the first time in more than a century, particle theory gained support again. Yet, it was clear that light had certain wave characteristics, and this raised the question—which is it, a wave or a set of particles streaming through space?

The work of German physicist Max Planck (1858-1947), father of quantum theory, and of Albert Einstein (1879-1955), helped resolve this apparent contradiction. Using Planck's quantum principles, Einstein, in 1905, showed that light appears in "bundles" of energy, which travel as waves but behave as particles in certain situations. Eighteen years later, American physicist Arthur Holly Compton (1892-1962) showed that, depending on the way it is tested, light appears as either a particle or a wave. These particles he called photons.

Wave Motion and Electromagnetic Waves

The particle behavior of electromagnetic energy is beyond the scope of the present discussion, though aspects of it are discussed elsewhere. For the present purposes, it is necessary only to view the electromagnetic spectrum as a series of waves, and in the paragraphs that follow, the rudiments of wave motion will be presented in short form.

A type of harmonic motion that carries energy from one place to another without actually moving any matter, wave motion is related to oscillation, harmonic—and typically periodic—motion in one or more dimensions. Oscillation involves no net movement, but only movement in place; yet individual waves themselves are oscillating, even as the overall wave pattern moves.

The term periodic motion, or movement repeated at regular intervals called periods, describes the behavior of periodic waves: waves in which a uniform series of crests and troughs follow each other in regular succession. Periodic waves are divided into longitudinal and transverse waves, the latter (of which light waves are an example) being waves in which the vibration or motion is perpendicular to the direction in which the wave is moving. Unlike longitudinal waves, such as those that carry sound energy, transverse waves are fairly easy to visualize, and assume the shape that most people imagine when they think of waves: a regular up-and-down pattern, called "sinusoidal" in mathematical terms.

PARAMETERS OF WAVE MOTION.

A period (represented by the symbol T ) is the amount of time required to complete one full cycle of the wave, from trough to crest and back to trough. Period is mathematically related to several other aspects of wave motion, including wave speed, frequency, and wavelength.

Frequency (abbreviated f ) is the number of waves passing through a given point during the interval of one second. It is measured in Hertz (Hz), named after Hertz himself: a single Hertz (the term is both singular and plural) is equal to one cycle of oscillation per second. Higher frequencies are expressed in terms of kilohertz (kHz; 10 3 or 1,000 cycles per second); megahertz (MHz; 10 6 or 1 million cycles per second); and gigahertz (GHz; 10 9 or 1 billion cycles per second.)

Wavelength (represented by the symbol λ, the Greek letter lambda) is the distance between a crest and the adjacent crest, or a trough and an adjacent trough, of a wave. The higher the frequency, the shorter the wavelength; and, thus, it is possible to describe waves in terms of either. According to quantum theory, however, electromagnetic waves can also be described in terms of photon energy level, or the amount of energy in each photon. Thus, the electromagnetic spectrum, as we shall see, varies from relatively long-wave length, low-frequency, low-energy radio waves on the one end to extremely short-wave-length, high-frequency, high-energy gamma rays on the other.

The other significant parameter for describing a wave—one mathematically independent from those so far discussed—is amplitude. Defined as the maximum displacement of a vibrating material, amplitude is the "size" of a wave. The greater the amplitude, the greater the energy the wave contains: amplitude indicates intensity. The amplitude of a light wave, for instance, determines the intensity of the light.

A RIGHT-HAND RULE.

Physics textbooks use a number of "right-hand rules": devices for remembering certain complex physical interactions by comparing the lines of movement or force to parts of the right hand. In the present context, a right-hand rule makes it easier to visualize the mutually perpendicular directions of electromagnetic waves, electric field, and magnetic field.

A field is a region of space in which it is possible to define the physical properties of each point in the region at any given moment in time. Thus, an electrical field and magnetic field are simply regions in which electrical and magnetic components, respectively, of electromagnetic force are exerted.

Hold out your right hand, palm perpendicular to the floor and thumb upright. Your fingers indicate the direction that an electromagnetic wave is moving. Your thumb points in the direction of the electrical field, as does the heel of your hand: the electrical field forms a plane perpendicular to the direction of wave propagation. Similarly, both your palm and the back of your hand indicate the direction of the magnetic field, which is perpendicular both to the electrical field and the direction of wave propagation.

The Electromagnetic Spectrum

As stated earlier, an electromagnetic wave is transverse, meaning that even as it moves forward, it oscillates in a direction perpendicular to the line of propagation. An electromagnetic wave can thus be defined as a transverse wave with mutually perpendicular electrical and magnetic fields that emanate from it.

The electromagnetic spectrum is the complete range of electromagnetic waves on a continuous distribution from a very low range of frequencies and energy levels, with a correspondingly long wavelength, to a very high range of frequencies and energy levels, with a correspondingly short wavelength. Included on the electromagnetic spectrum are radio waves and microwaves; infrared, visible, and ultraviolet light; x rays, and gamma rays. Though each occupies a definite place on the spectrum, the divisions between them are not firm: as befits the nature of a spectrum, one simply "blurs" into another.

FREQUENCY RANGE OF THE ELECTROMAGNETIC SPECTRUM.

The range of frequencies for waves in the electromagnetic spectrum is from approximately 10 2 Hz to more than 10 25 Hz. These numbers are an example of scientific notation, which makes it possible to write large numbers without having to include a string of zeroes. Without scientific notation, the large numbers used for discussing properties of the electromagnetic spectrum can become bewildering.

The first number given, for extremely low-frequency radio waves, is simple enough—100—but the second would be written as 1 followed by 25 zeroes. (A good rule of thumb for scientific notation is this: for any power n of 10, simply attach that number of zeroes to 1. Thus 10 6 is 1 followed by 6 zeroes, and so on.) In any case, 10 25 is a much simpler figure than 10,000,000,000,000,000,000,000,000—or 10 trillion trillion. As noted earlier, gigahertz, or units of 1 billion Hertz, are often used in describing extremely high frequencies, in which case the number is written as 10 16 GHz. For simplicity's sake, however, in the present context, the simple unit of Hertz (rather than kilo-, mega-, or gigahertz) is used wherever it is convenient to do so.

WAVELENGTHS ON THE ELECTROMAGNETIC SPECTRUM.

The range of wavelengths found in the electromagnetic spectrum is from about 10 8 centimeters to less than 10 −15 centimeters. The first number, equal to 1 million meters (about 621 mi), obviously expresses a great length. This figure is for radio waves of extremely low frequency; ordinary radio waves of the kind used for actual radio broadcasts are closer to 10 5 centimeters (about 328 ft).

For such large wavelengths, the use of centimeters might seem a bit cumbersome; but, as with the use of Hertz for frequencies, centimeters provide a simple unit that can be used to measure all wavelengths. Some charts of the electromagnetic spectrum nonetheless give figures in meters, but for parts of the spectrum beyond microwaves, this, too, can become challenging. The ultra-short wavelengths of gamma rays, after all, are equal to one-trillionth of a centimeter. By comparison, the angstrom—a unit so small it is used to measure the diameter of an atom—is 10 million times as large.

ENERGY LEVELS ON THE ELECTROMAGNETIC SPECTRUM.

Finally, in terms of photon energy, the unit of measurement is the electron volt (eV), which is used for quantifying the energy in atomic particles. The range of photon energy in the electromagnetic spectrum is from about 10 −13 to more than 10 10 electron volts. Expressed in terms of joules, an electron volt is equal to 1.6 · 10 −19 J.

To equate these figures to ordinary language would require a lengthy digression; suffice it to say that even the highest ranges of the electromagnetic spectrum possess a small amount of energy in terms of joules. Remember, however, that the energy level identified is for a photon—a light particle. Again, without going into a great deal of detail, one can just imagine how many of these particles, which are much smaller than atoms, would fit into even the smallest of spaces. Given the fact that electromagnetic waves are traveling at a speed equal to that of light, the amount of photon energy transmitted in a single second is impressive, even for the lower ranges of the spectrum. Where gamma rays are concerned, the energy levels are positively staggering.



Also read article about Electromagnetic Spectrum from Wikipedia

User Contributions:

Comment about this article, ask questions, or add new information about this topic: