Food Webs - How it works



Food Webs in Context

An ecosystem is a community of independent organisms along with the inorganic components (chiefly soil, water, air, and rocks) that make up their environment. A biome is a large ecosystem, characterized by its dominant life-forms—for example, the Amazonian rain forest.

That portion of an ecosystem composed only of living things, as opposed to the formerly living or never living components, is known as a biological community. This community includes creatures from all five kingdoms of living organisms (including bacteria, algae, and fungi), whereas the term biota typically refers only to plant and animal life within a biological community or ecosystem. (For more on these subjects, see Ecosystems and Ecology and Biological Communities.)

Trophic Levels

The organisms in a biological community are linked in their need to obtain energy from food, which derives from the Sun through plant life. (There are, however, some communities, in areas such as deep-ocean rifts, that are not dependent on sunlight at all.) The Sun's energy is electromagnetic and travels in the form of radiation, which Earth receives as light and heat. Plants, known as primary producers, convert this electromagnetic energy into chemical energy through the process of photosynthesis.

The plants are eaten by herbivores (plant-eating animals), known also as primary consumers, examples of which include squirrels, rabbits, mice, deer, cows, horses, sheep, and seed-eating birds. These creatures, in turn, are eaten by secondary consumers, which are either carnivores, which are creatures that eat only meat, or omnivores—creatures, such as humans, that eat meat and plants.

There may even be tertiary, or third-level, consumers. These are animals that eat secondary consumers; examples are mountain lions and hawks, both of which eat such second-order consumers as snakes and owls. Human societies that eat dogs or cats, as well as those that engage in cannibalism, also behave as tertiary consumers. (See Biological Communities for a biological explanation of what otherwise is considered an abhorrent and immoral practice—not to mention a dangerous one, due to the risk of such diseases as kuru, a type of spongiform encephalopathy.) In any case, the further along in the chain of trophic levels or stages of the food web, the fewer consumers there are.

ENERGY AND TROPHIC LEVELS.

It is fairly obvious that when a creature is "higher on the food chain" (to use the common expression), it has fewer natural predators. The reason for this is that at each successive trophic level, there are simply fewer organisms; this, in turn, is due to the fact that the energy available to each level is progressively smaller, and the organisms themselves progressively larger. This, in turn, stems from one of the most intriguing, maddening concepts in the entire universe: the second law of thermodynamics, which we discuss shortly.

Because of the diminishing number of organisms at each trophic level, the food web often is depicted as a pyramid, a concept we explore further later in this essay. The number of organisms begins to increase again at the next trophic level beyond secondary or tertiary consumers, that of decomposers. Large omnivores and carnivores may not be prey for other creatures in life, but everything dies eventually, and anything that has ever lived is food for detritivores, or organisms that feed on waste matter.

DETRITIVORES AND DECOMPOSERS.

Detritivores, which range in size and complexity from maggots to vultures, may not be the most appealing creatures on Earth, but without them life itself would suffer. By consuming the remains of formerly living things, they break organic material down into inorganic substances. In other words, their internal systems chemically process compounds containing the element carbon in characteristic structures. They then release that carbon into the atmosphere and soil in such a way that what remains is inorganic material that enriches the soil for the growth of new plant life.

But detritivores are not the last stop on the food web. The final trophic level, before the cycle comes back around to plants, contains the largest number of organisms in the entire food web—perhaps billions and billions, even in a space smaller than a coffee cup. These are decomposers, or organisms that, as with detritivores, obtain their energy from the chemical breakdown of dead organisms. The decomposers, however, break down the nutrients in decayed organic matter to a far greater extent than do detritivores.

Typically, decomposers are microorganisms, including bacteria and fungi, and they process materials in such a way that complex compounds undergo the chemical reaction of decomposition. Through decomposition, compounds are broken down into simpler forms, or even into their constituent elements, which provide the environment with nutrients necessary to the growth of more plant life.

CATEGORIZING THE TROPHIC LEVELS.

The organisms in the food web can be viewed in three groups: producers (plants), consumers (primary-and secondary-consuming animals, whether herbivores, carnivores, or omnivores), and decomposers (that is, both detritivores and true decomposers). Producers and consumers are part of a larger structure known as the grazing food web, in which food is "on its way up the food chain," as it were. Decomposers and detritivores make up the decomposer food web, which brings food back "down" to the soil.

Producers also are called autotrophs, from Greek roots meaning "self-feeders," because they are not dependent on other organisms as a source of energy. Beyond the level of the primary producers, all consumers are known as heterotrophs, or "other-feeders." These creatures feed on other organisms to obtain their energy and are classified according to the types of food they eat—herbivores, carnivores, omnivores, as we already have discussed. Detritivores and decomposers also are considered heterotrophs.

Organisms and Energy

Rather than depending on other organisms for energy, autotrophs obtain energy from the Sun and carbon dioxide from the atmosphere. From these components, they build the large organic molecules that they need to survive. Green plants do this through the process of photosynthesis, a chemical reaction that can be represented as follows:

solar energy + carbon dioxide (CO 2 ) + water (H 2 O) → glucose (sugar: C 6 H 12 O 6 ) + oxygen (O 2 )

Actually, in order to produce what chemists call a balanced equation, it would be necessary to show this equation as a reaction between the energy and six molecules each of carbon dioxide and water, which would produce a glucose molecule and six oxygen molecules. In any case, what we have described here is an amazing thing and one of the great wonders of nature. Sunlight aids plants in converting carbon dioxide, which they receive from the respiration of animals, along with water (which also may come from animal respiration, though this is not necessarily the case), into a sugar molecule for the plant's sustenance. Furthermore, oxygen, essential to the life of virtually all animals, also is produced—yet from the standpoint of the plant, it is simply a waste by-product!

THE SECOND LAW OF THERMODYNAMICS.

The productivity of plants, which is measured in terms of biomass (the combined mass of all organisms at a particular trophic level in a food web), determines the amount of "fixed," or usable, energy available to other trophic levels on the food web. The amount of energy available always will be less for each successive trophic level, through the point where consumers end and decomposers begin—that is, through the level of the secondary or perhaps tertiary consumer.

If there is any scientific equivalent of the curse in the Garden of Eden (the punishment for the sins of Adam and Eve, according to Judeo-Christian belief), it is the second law of thermodynamics. Just as the expulsion from Paradise in the biblical story ensured that life would be much more difficult for humans than it would have been in Eden, so the second law thwarts all ambitions toward transcending the limits of physical reality.

The first law of thermodynamics states that it is impossible to obtain more energy from a system than is put into it. Thus, for instance, a car will go only as far as is allowed by the amount of energy that is pumped into its tank. The first law, discovered in the mid-nineteenth century, effectively ruled out any hopes of a perpetual-motion machine, but the second law, derived a few decades later, delivered even worse news.

Though it can be stated in a number of ways, the second law essentially means that it is impossible to extract as much energy from a system as one puts into it. Thus, in the case of an automobile, most of the energy contained in the gas does not go toward moving the car; rather, it is dissipated in the form of heat and sound, as a natural by-product of operating the engine. Even without running an air conditioner or other energy-consuming device, only about 30% of the energy from the gas goes to turning the wheels.

THE ECOLOGICAL PYRAMID.

What this means for the food web is that there is bound to be a loss of energy in the transfer from one trophic level to another. Organisms never manage to retrieve 100% of the energy from the materials they eat; in fact, the figure is more like 10%. A rabbit that eats a carrot gets only about 10% of the energy in it, and an owl that eats the rabbit gets only about 10% of the energy from the rabbit, or 1% of the energy in the carrot. Because of these diminishing returns, there are always fewer organisms at each successive trophic level on the grazing food web. This fact is expressed in a model known as the ecological pyramid, or energy pyramid, which shows that as the amount of total energy decreases with each trophic level, so does the biomass. As a result, it may take 1,000 carrots to support 100 rabbits, 10 owls, and one hawk.

The picture changes as the shift is made from the grazing web to the decomposer web. Detritivores and decomposers are extraordinarily efficient feeders, reworking detritus over and over and extracting more fixed energy as they do. Eventually, they break the waste down into simple inorganic chemicals, which, as we have noted, then may be reused by the primary producers. The number of organisms in the decomposing food web dwarfs that of all others combined, though decomposers themselves are very small, and their combined population takes up very little physical space.



User Contributions:

Comment about this article, ask questions, or add new information about this topic: