Light - How it works



Early Progress in Understanding of Light

The first useful observations concerning light came from ancient Greece. The Greeks recognized that light travels through air in rays, a term from geometry describing that part of a straight line that extends in one direction only. Upon entering some denser medium, such as glass or water, as Greek scientists noticed, the ray experiences refraction, or bending. Another type of incidence, or contact, between a light ray and any surface, is reflection, whereby a light ray returns, rather than being absorbed at the interface.

The Greeks worked out the basic laws governing reflection and refraction, observing, for instance, that in reflection, the angle of incidence is approximately equal to the angle of reflection. Unfortunately, they also subscribed to the erroneous concept of intromission—the belief that light rays originate in the eye and travel toward objects, making them visible. Some 1,500 years after the high point of Greek civilization, Arab physicist Alhasen (Ibn al-Haytham; c. 965-1039), sometimes called the greatest scientist of the Middle Ages, showed that light comes from a source such as the Sun, and reflects from an object to the eyes.

The next great era of progress in studies of light began with the Renaissance (c. 1300-c. 1600.) However, the most profound scientific achievements in this area belonged not to scientists, but to painters, who were fascinated by color, shading, shadows, and other properties of light. During the early seventeenth century, Galileo Galilei (1564-1642) and German astronomer Johannes Kepler (1571-1630) built the first refracting telescopes, while Dutch physicist and mathematician Willebrord Snell (1580-1626) further refined the laws of refraction.

The Spectrum

Sir Isaac Newton (1642-1727) was as intrigued with light as he was with gravity and the other concepts associated with his work. Though it was not as epochal as his contributions to mechanics, Newton's work in optics, an area of physics that studies the production and propagation of light, was certainly significant.

In Newton's time, physicists understood that a prism could be used for the diffusion of light rays—in particular, to produce an array of colors from a beam of white light. The prevailing belief was that white was a single color like the others, but Newton maintained that it was a combination of all other colors. To prove this, he directed a beam of white light through a prism, then allowed the diffused colors to enter another prism, at which point they recombined as white light.

Newton gave to the array of colors in visible light the term spectrum, (plural, "spectra") meaning the continuous distribution of properties in an ordered arrangement across an unbroken range. The term can be used for any set of characteristics for which there is a gradation, as opposed to an excluded middle. An ordinary light switch provides an example of a situation in which there is an excluded middle: there is nothing between "on" and "off." A dimmer switch, on the other hand, is a spectrum, because a very large number of gradations exist between the two extremes represented by a light switch.

SEVEN COLORS…OR SIX?

The distribution of colors across the spectrum is as follows: red-orange-yellow-green-blue-violet. The reasons for this arrangement, explained below in the context of the electromagnetic spectrum, were unknown to Newton. Not only did he live in an age that had almost no understanding of electromagnetism, but he was also a product of the era called the Enlightenment, when intellectuals (scientists included) viewed the world as a highly rational, ordered mechanism. His Enlightenment viewpoint undoubtedly influenced his interpretation of the spectrum as a set of seven colors, just as there are seven notes on the musical scale.

In addition to the six basic colors listed above, Newton identified a seventh, indigo, between blue and violet. In fact, there is a noticeable band of color between blue and violet, but this is because one color fades into another. With a spectrum, there is a blurring of lines between one color and the next: for instance, orange exists at a certain point along the spectrum, as does yellow, but between them is a nearly unlimited number of orange-yellow and yellow-orange gradations.

Indigo itself is not really a distinct color—just a deep, purplish blue. But its inclusion in the listing of colors on the spectrum has given generations of students a handy mnemonic (memorization)

ISAAC NEWTON. (The Bettmann Archive. Reproduced by permission.)
I SAAC N EWTON . (
The Bettmann Archive
. Reproduced by permission.)
device: the name "ROY G. BIV." These letters form an acrostic (a word constructed from the first letters of other words) for the colors of the spectrum. Incidentally, there is something arbitrary even in the idea of six colors, or for that matter seven musical notes: in both cases, there exists a very large gradation of shades, yet also in both cases, the divisions used were chosen for practical purposes.

Waves, Particles, and Other Questions Concerning Light

THE WAVE-PARTICLE CONTROVERSY BEGINS.

Newton subscribed to the corpuscular theory of light: the idea that light travels as a stream of particles. On the other hand, Dutch physicist and astronomer Christiaan Huygens (1629-1695) maintained that light travels in waves. During the century that followed, adherents of particle theory did intellectual battle with proponents of wave theory. "Battle" is not too strong a word, because the conflict was heated, and had a nationalistic element. Reflecting both the burgeoning awareness of the nation-state among Europeans, as well as Britons' sense of their own island as an entity separate from the European continent, particle theory had its strongest defenders in Newton's homeland, while continental scientists generally accepted wave theory.

According to Huygens, the appearance of the spectrum, as well as the phenomena of reflection and refraction, indicated that light was a wave. Newton responded by furnishing complex mathematical calculations which showed that particles could exhibit the behaviors of reflection and refraction as well. Furthermore, Newton challenged, if light were really a wave, it should be able to bend around corners. Yet, in 1660, an experiment by Italian physicist Francesco Grimaldi (1618-1663) proved that light could do just that. Passing a beam of light through a narrow aperture, or opening, Grimaldi observed a phenomenon called diffraction, or the bending of light.

In view of the nationalistic character that the wave-particle debate assumed, it was ironic that the physicist whose work struck a particularly forceful blow against corpuscular theory was himself an Englishman: Thomas Young (1773-1829), who in 1801 demonstrated interference in light. Directing a light beam through two closely spaced pinholes onto a screen, Young reasoned that if light truly were made of particles, the beams would project two distinct points onto the screen. Instead, what he saw was a pattern of interference—a wave phenomenon.

THE QUESTION OF A MEDIUM.

As the nineteenth century progressed, evidence in favor of wave theory grew. Experiments in 1850 by Jean Bernard Leon Foucault (1819-1868)—famous for his pendulum—showed that light traveled faster in air than through water. Based on studies of wave motion up to that time, Foucault's work added substance to the view of light as a wave.

Foucault also measured the speed of light in a vacuum, a speed which he calculated to within 1% of its value as it is known today: 186,000 mi (299,339 km) per second. An understanding of just how fast light traveled, however, caused a nagging question dating back to the days of Newton and Huygens to resurface: how did light travel?

All types of waves known to that time traveled through some sort of medium: for instance, sound waves were propagated through air, water, or some other type of matter. If light was a wave, as Huygens said, then it, too, must have some medium. Huygens and his followers proposed a weak theory by suggesting the existence of an invisible substance called ether, which existed throughout the universe and which carried light.

Ether, of course, was really no answer at all. There was no evidence that it existed, and to many scientists, it was merely a concept invented to shore up an otherwise convincing argument. Then, in 1872, Scottish physicist James Clerk Maxwell (1831-1879) proposed a solution that must have surprised many scientists. The "medium" through which light travels, Maxwell proposed, was no medium at all; rather, the energy in light is transferred by means of radiation, which requires no medium.

Electromagnetism

Maxwell brought together a number of concepts developed by his predecessors, sorting these out and adding to them. His work led to the identification of a "new" fundamental interaction, in addition to that associated with gravity. This was the mode of particle interaction associated with electromagnetic force.

The particulars of electromagnetic force, waves, and radiation are a subject unto themselves—really, many subjects. As for the electromagnetic spectrum, it is treated at some length in an essay elsewhere in this volume, and the reader is encouraged to review that essay to gain a greater understanding of light and its place in the spectrum.

In addition, some awareness of wave motion and related phenomena would also be of great value, and, for this purpose, other essays are recommended. In the present context, a number of topics relating to these larger subjects will be handled in short order, with a minimum of explanation, to enable a more speedy transition to the subject of principal importance here: light.

ELECTROMAGNETIC WAVES.

There is, of course, no obvious connection between light and the electromagnetic force observed in electrical and magnetic interactions. Yet, light is an example of an electromagnetic wave, and is part of the electromagnetic spectrum. The breakthrough in establishing the electromagnetic quality of light can be attributed both to Maxwell and German physicist Heinrich Rudolf Hertz (1857-1894).

In his Electricity and Magnetism (1873), Maxwell suggested that electromagnetic force might have aspects of a wave phenomenon, and his experiments indicated that electromagnetic waves should travel at exactly the same speed as light. This appeared to be more than just a coincidence, and his findings led him to theorize that the electromagnetic interaction included not only electricity and magnetism, but light as well. Some time later, Hertz proved Maxwell's hypothesis by showing that electromagnetic waves obeyed the same laws of reflection, refraction, and diffraction as light.

Hertz also discovered the photoelectric effect, the process by which certain metals acquire an electrical potential when exposed to light. He could not explain this behavior, and, indeed, there was nothing in wave theory that could account for it. Strangely, after more than a century in which acceptance of wave theory had grown, he had encountered something that apparently supported what Newton had said long before: that light traveled in particles rather than waves.

The wave-Particle Debate Revisited

One of the modern physicists whose name is most closely associated with the subject of light is Albert Einstein (1879-1955). In the course of proving that matter is convertible to energy, as he did with the theory of relativity, Einstein predicted that this could be illustrated by accelerating to speeds close to that of light. (Conversely, he also showed that it is impossible for matter to reach the speed of light, because to do so would—as he proved mathematically—result in the matter acquiring an infinite amount of mass, which, of course, is impossible.)

Much of Einstein's work was influenced by that of German physicist Max Planck (1858-1947), father of quantum theory. Quantum theory and quantum mechanics are, of course, far too complicated to explain in any depth here. It is enough to say that they called into question everything physicists thought they knew, based on Newton's theories of classical mechanics. In particular, quantum mechanics showed that, at the subatomic level, particles behave in ways not just different from, but opposite to, the behavior of larger physical objects in the observable world. When a quantity is "quantized," its values or properties at the atomic or subatomic level are separate from one another—meaning that something can both be one thing and its opposite, depending on how it is viewed.

Interpreting Planck's observations, Einstein in a 1905 paper on the photoelectric effect maintained that light is quantized—that it appears in "bundles" of energy that have characteristics both of waves and of particles. Though light travels in waves, as Einstein showed, these waves sometimes behave as particles, which is the case with the photoelectric effect. Nearly two decades later, American physicist Arthur Holly Compton (1892-1962) confirmed Einstein's findings and gave a name to the "particles" of light: photons.

Light's Place in the Electromagnetic Spectrum

The electromagnetic spectrum is the complete range of electromagnetic waves on a continuous distribution from a very low range of frequencies and energy levels, with a correspondingly long wavelength, to a very high range of frequencies and energy levels, with a correspondingly short wavelength. Included on the electromagnetic spectrum are radio waves and microwaves; infrared, visible, and ultraviolet light; x rays, and gamma rays. As discussed earlier, concerning the visible color spectrum, each of these occupies a definite place on the spectrum, but the divisions between them are not firm: in keeping with the nature of a spectrum, one band simply "blurs" into another.

Of principal concern here is an area near the middle of the electromagnetic spectrum. Actually, the very middle of the spectrum lies within the broad area of infrared light, which has frequencies ranging from 10 12 to just over 10 14 Hz, with wavelengths of approximately 10 −1 to 10 −3 centimeters. Even at this point, the light waves are oscillating at a rate between 1 and 100 trillion times a second, and the wavelengths are from 1 millimeter to 0.01 millimeters. Yet, over the breadth of the electromagnetic spectrum, wavelengths get much shorter, and frequencies much greater.

Infrared lies just below visible light in frequency, which is easy to remember because of the name: red is the lowest in frequency of all the colors, as discussed below. Similarly, ultraviolet lies beyond the highest-frequency color, violet. Neither infrared nor ultraviolet can be seen, yet we experience them as heat. In the case of ultraviolet (UV) light, the rays are so powerful that exposure to even the minuscule levels of UV radiation that enter Earth's atmosphere can cause skin cancer.

Ultraviolet light occupies a much narrower band than infrared, in the area of about 10 15 to 10 16 Hz—in other words, oscillations between 1 and 10 quadrillion times a second. Wavelengths in this region are from just above 10 −6 to about 10 −7 centimeters. These are often measured in terms of a nanometer (nm)—equal to one-millionth of a millimeter—meaning that the wavelength range is from above 100 down to about 10 nm.

Between infrared and ultraviolet light is the region of visible light: the six colors that make up much of the world we know. Each has a specific range and frequency, and together they occupy an extremely narrow band of the electromagnetic spectrum: from 4.3 · 10 14 to 7.5 · 10 14 Hz in frequency, and from 700 down to 400 nm in wavelength. To compare its frequency range to that of the entire spectrum, for instance, is the same as comparing 3.2 to 100 billion.



Also read article about Light from Wikipedia

User Contributions:

Comment about this article, ask questions, or add new information about this topic: