Vitamins - Real-life applications



Fat-Soluble Vitamins

We are accustomed in modern life to being told that fat is bad for us, but to quote a much-cited line from the American composer George Gershwin's opera Porgy and Bess, "It ain't necessarily so." Fat is not inherently bad for people; in fact, a certain amount in the diet is essential. The problem in America today is the type of fat that people consume. There is a big difference between the healthy, natural, unsaturated fats one might find, say, in fresh salmon, and the highly processed and saturated fats in a bag of potato chips. (The term saturated means that every gap in which a hydrogen atom could fit in a string of carbon and hydrogen atoms has been filled. This helps make fats firm, for use in such products as shortening.)

Such fat is extremely harmful, because the body is not able to process it; even so, a certain amount of natural fat in the diet can be highly beneficial. This is true in large part because fat can serve as a medium for the fat-soluble vitamins A, D, E, and K, which are deposited in the body's fat cells. But as we noted earlier, it is important not to overdose on fat-soluble vitamins, because then what is inherently healthy can become extremely unhealthy.

VITAMIN A.

In 1596 the Dutch explorer Willem Barents (1550-1597) and his shipwrecked crew spent a grueling winter on the island of Novaya Zemlya in the Arctic Ocean north of Russia. They had sailed from Holland in search of the Northeast Passage, which, like the more famous Northwest Passage above Canada, offered the prospect of a short, relatively direct sea route from Europe to Asia and the Americas. The problem was that the ice made sailing the northern seas virtually impossible. It would be almost three centuries before a crew managed to negotiate the Northeast Passage, by which time the European powers had long since given up all hopes of using it as a viable sailing route. (The same was true of the Northwest Passage, which was not traversed until 1906.)

THE DUTCH EXPLORER WILLEM BARENTS AND HIS SHIPWRECKED CREW EXPERIENCED VITAMIN APOISONING WHEN THEY ATE POLAR BEARS TO STAY ALIVE ON THE ISLAND OF NOVAYA ZEMLYA IN THE ARCTIC OCEAN. POLAR BEAR LIVER CONTAINS ABOUT 450 TIMES THE RECOMMENDED DAILY DOSE OF VITAMIN A; SYMPTOMS OF POISONING INCLUDE PAINFUL JOINTS, BONE THICKENING, PEELING OF THE SKIN, AND LIVER DISEASE. (© Bettmann/Corbis. Reproduced by permission.)
T HE D UTCH EXPLORER W ILLEM B ARENTS AND HIS SHIPWRECKED CREW EXPERIENCED VITAMIN A POISONING WHEN THEY ATE POLAR BEARS TO STAY ALIVE ON THE ISLAND OF N OVAYA Z EMLYA IN THE A RCTIC O CEAN . P OLAR BEAR LIVER CONTAINS ABOUT 450 TIMES THE RECOMMENDED DAILY DOSE OF VITAMIN A; SYMPTOMS OF POISONING INCLUDE PAINFUL JOINTS , BONE THICKENING , PEELING OF THE SKIN , AND LIVER DISEASE . (
© Bettmann/Corbis
. Reproduced by permission. )

Barents and his men knew none of that, nor would they have cared in that miserable winter of 1596-1597. All they cared about was survival, the chances for which seemed slim—and not just because of the almost inhuman cold or the fact that their ship had been cracked to pieces by the ice. Men were dying of scurvy, a vitamin-deficiency disease we discuss later in the context of vitamin C, as well as from the cold. Yet there were a few blessings, mainly in the form of available wood for fuel and animals for food. The men killed polar bears and ate their meat, and no doubt they were thankful just to stay alive. They could not have guessed, however, that they were actually killing themselves with an overdose of vitamin A.

Just 1 lb. (0.454 kg) of polar bear liver contains about 450 times the recommended daily dose of vitamin A, and the men in Barents's expedition were absorbing far more of the vitamin than they should have. In time, they began to experience the effects of vitamin A poisoning: painful joints, bone thickening, peeling of the skin over the entire body, and chronic liver disease. When spring came, the men managed to make it off the island, but many of them—Barents included—never lived to see Holland again, in part because the side effects of vitamin A toxicity had weakened them.

So why take vitamin A at all? Because it is necessary for proper growth of bones and teeth, for the maintenance and functioning of skin and mucous membranes, and for the ability to see in dim light. There is some evidence that it can help prevent cataracts (a clouding of the lens in the eye) and cardiovascular disease, a condition of the heart and circulatory system. Furthermore, when taken at the onset of a cold, vitamin A can ward off the illness and fight its symptoms.

One of the first signs of vitamin A deficiency is "night blindness," in which the rods of the eye (necessary for night vision) fail to function normally. Extreme cases of vitamin A deficiency can lead to total blindness. Other symptoms include dry and scaly skin, problems with the mucous linings of the digestive tract and urinary system, and abnormal growth of teeth and bones. The bodies of healthy adults who have an adequate diet can store several years' supply of this vitamin, but young children, who have not had time to build up such a large reserve, suffer from

DURING THE GREAT DEPRESSION, A CHILD IN THE SOUTHERN UNITED STATES SHOWS SIGNS OF RICKETS, STEMMING FROM VITAMIN DDEFICIENCY. UNDER THE INFLUENCE OF THIS DEBILITATING AND DISFIGURING DISEASE, THE LEGS BECOME BOWED BY THE WEIGHT OF THE BODY, AND THE WRISTS AND ANKLES THICKEN. (© Marion Post Wolcott/Corbis. Reproduced by permission.)
D URING THE G REAT D EPRESSION , A CHILD IN THE SOUTHERN U NITED S TATES SHOWS SIGNS OF RICKETS , STEMMING FROM VITAMIN D DEFICIENCY . U NDER THE INFLUENCE OF THIS DEBILITATING AND DISFIGURING DISEASE , THE LEGS BECOME BOWED BY THE WEIGHT OF THE BODY , AND THE WRISTS AND ANKLES THICKEN . (
© Marion Post Wolcott/Corbis
. Reproduced by permission. )
deprivation much more quickly if they do not consume enough.

Vitamin A is present in meats (mainly liver), fish oil, egg yolks, butter, and cheese. Although plants do not have vitamin A, dark green leafy vegetables and yellow fruits and vegetables (e.g., carrots, sweet potatoes, cantaloupe, corn, and peaches) contain a substance called beta-carotene, which is converted to vitamin A in the intestine and then absorbed by the body. It is nearly impossible to ingest beta-carotene in toxic amounts, unlike vitamin A from animal sources, since the body will not convert excess amounts to toxic levels of vitamin A.

VITAMIN D.

Vitamin D is actually two different substances, D 2 and D 3 . (There was no D 1, since the substance designated thus at one time turned out to be a mixture of several compounds, including calciferol, or D 2 ) Both forms of vitamin D are activated, or made effective, by sunlight, and for this reason vitamin D often is called the sunshine vitamin. It is hard to suffer a vitamin D deficiency if one gets enough sunshine in combination with consuming such foods as eggs (specifically, the yolk), such fatty fish as salmon, and enriched milk. (Milk does not naturally contain vitamin D, but the vitamin is sometimes included as an additive.)

Vitamin D lets the body utilize calcium and phosphorus in bone and tooth formation, and a deficiency causes a bone disease called rickets. Under the influence of this physically debilitating and disfiguring disease, legs become bowed by the weight of the body, and the wrists and ankles thicken. The teeth are badly affected and, for a young child, take much longer to mature. Infants and children are most likely to suffer the effects of rickets, but since all milk and infant formulas have vitamin D added to them, the condition is seen rarely in the industrialized world today. In the brutal early days of the Industrial Revolution, however (i.e., in England ca. 1760-1830), crowded slum conditions in areas where there was little or no sunlight made possible many cases of rickets.

Whereas rickets primarily affects children, adults may suffer from a disease called osteomalacia, caused by a deficiency of vitamin D, calcium, and phosphorous. Sometimes seen in the Middle East and other parts of Asia, osteomalacia brings with it rheumatic pain and causes the bones to become soft and deformed. As with rickets, the treatment for osteomalacia is a combination of calcium, phosphorous, and vitamin D. On the other hand, as with all fat-soluble vitamins, a person may take in excessive amounts of vitamin D, which has its own ill effects: nausea, diarrhea, weight loss, and pain in the bones and joints. Damage to the kidneys and blood vessels also can occur as calcium deposits build up in these tissues.

VITAMIN E.

Composed of at least seven similar chemicals called the tocopherols, vitamin E is found in green leafy vegetables, wheat germ and other plant oils, egg yolks, and meat. The main function of this vitamin is to act as an antioxidant, to counteract the harmful effects oxygen can have on tissues. It may seem strange to speak of oxygen causing harm, since it is essential to life, but oxidation is an extremely powerful chemical reaction that, under various conditions, can manifest as rotting or putrefaction, rusting, or even combustion and explosion. When an apple turns brown a few minutes after you have cut it open, it is the result of oxidation.

Oxidation also may be linked to the effects of aging in humans as well as to other conditions, such as cancer, hardening of the arteries, and rheumatoid arthritis. It appears that oxygen molecules, which draw electrons to them, extract these electrons from the membranes in human cells. Over time, this can cause a gradual breakdown in the body's immune system. Antioxidants, such as vitamin E or beta carotene, therefore may be important in preserving human health and well-being.

Vitamin E is particularly important for counteracting oxidation in fats. When they are oxidized, fats form a highly reactive substance called peroxide, which is often very damaging to cells. Vitamin E is more reactive (i.e., more likely to form or break chemical bonds) than the fatty acid molecule, and, therefore, the vitamin reacts instead of the fat. Because cell membranes are composed partly of fat molecules, vitamin E is vitally important in maintaining the nervous, circulatory, and reproductive systems and in protecting the kidneys, lungs, and liver.

Because vitamin E is so common in foods, it is very difficult to suffer from a deficiency of this vitamin unless a person avoids consuming fats altogether—another example of why a no-fat diet is not a healthy one. The effects of vitamin E deficiency, all of which are apparently linked to the loss of its antioxidant protection, include cramping in the legs, fibrocystic breast disease (a condition that involves the formation of lumps and cysts in the breasts), and even muscular dystrophy. The seriousness of the latter two diseases only serves to highlight the importance of vitamin E to the body.

VITAMIN K.

Like vitamin D, vitamin K is composed of two groups of compounds, vitamins K 1 and K 2 . There is also a substance called K 3 , but this vitamin is actually menadione, a synthetic compound from which the other forms of K are derived. You can find vitamin K in many plants, especially green leafy ones such as spinach, and in liver. Vitamin K is also made by the bacteria that live in the intestine—the "good" bacteria that help make possible the processing of food through the body.

Vitamin K appears to be critical to blood clotting, thanks to its role in assisting the formation of a chemical called prothrombin in the liver.

THE AMERICAN CHEMIST LINUS PAULING (SHOWN TOSSING AN ORANGE), WINNER OF THE NOBEL PRIZES IN CHEMISTRY AND IN PEACE, HELPED POPULARIZE VITAMIN C, ALSO KNOWN AS ASCORBIC ACID. (© Roger Ress-meyer/Corbis. Reproduced by permission.)
T HE A MERICAN CHEMIST L INUS P AULING ( SHOWN TOSSING AN ORANGE ), WINNER OF THE N OBEL P RIZES IN CHEMISTRY AND IN PEACE , HELPED POPULARIZE VITAMIN C, ALSO KNOWN AS ASCORBIC ACID . (
© Roger Ress-meyer/Corbis
. Reproduced by permission. )
Deficiencies of this vitamin rarely occur as the result of an incomplete diet; instead, it is usually a consequence of liver damage and the blood's inability to process the vitamin. The deficiency manifests in unusual bleeding or large bruises under the skin or in the muscles. Adults in the West seldom experience vitamin K deficiencies, but newborn infants have been known to suffer from brain hemorrhage owing to a lack of this vitamin.

Water-Soluble Vitamins

B VITAMINS.

The two water-soluble vitamins, as we shall see, have played a major part in medical history. Actually, there are more than two water-soluble vitamins, because vitamin B is really a complex of about a dozen vitamins—hence, the name B complex. Among them are vitamin B 1 (thiamine), vitamin B 2 (riboflavin), vitamin B 6 (pyridoxine), and vitamin B 12 (cobalamin). A few others—for example, niacin (vitamin B 7 ) and pantothenic acid (vitamin B 3 ), are known better by names other than their "B names," while biotin and folate, or folic acid, are not known by "B names" at all.

Vitamin B 1 , present in whole grains, nuts, legumes (e.g., peas), pork, and liver, helps the body release energy from carbohydrates. More than 4,000 years ago, the Chinese described a disease we know today as beriberi, which affects the nervous and gastrointestinal systems and causes nausea, fatigue, and mental confusion. The cause of beriberi is a deficiency of thiamine, or B 1 , found in the husks or bran of rice and grains. White rice, which most people find more pleasing to the palate than brown rice, is the result of a milling and polishing process in which the husks—and along with them, this important nutrient—are removed. Manufacturers today produce "enriched" rice, flour, and other grain products by adding thiamine back in, but until scientists discovered the importance of thiamin in grain husks, many people, especially in the Far East, suffered the effects of beriberi. (Early research on beriberi will be discussed later.)

Vitamin B 2 helps the body release energy from fats, proteins, and carbohydrates. It can be obtained from whole grains, organ meats (e.g., liver), and green leafy vegetables. Lack of this vitamin causes severe skin problems. Vitamin B 6 is important in the building of body tissue as well as in protein metabolism and the synthesis of hemoglobin (an iron-containing pigment in red blood cells that is responsible for transporting oxygen to the tissues and removing carbon dioxide). A deficiency can cause depression, nausea, and vomiting. Vitamin B 12 is necessary for the proper functioning of the nervous system and in the formation of red blood cells. It can be obtained from meat, fish, and dairy products. Anemia (a lack of red blood cells, which produces a lethargic condition), nervousness, fatigue, and even brain degeneration, can result from vitamin B 12 deficiency.

Niacin is also highly important to human health, as we explain later in the context of the disease pellagra. Pantothenic acid helps release energy from fats and carbohydrates and is found in large quantities in egg yolks, liver, eggs, nuts, and whole grains. Deficiency of this vitamin causes anemia. Biotin, widely available from grains, legumes, and liver, plays a part in the release of energy from carbohydrates and in the formation of fatty acids. A lack of biotin causes dermatitis, or skin inflammation.

VITAMIN C.

The American chemist and peace activist Linus Pauling (1901-1994), winner of the Nobel Prize in chemistry (1954) and peace (1962), helped popularize vitamin C, also known as ascorbic acid. It was Pauling who originated the idea, now widespread in society, that massive doses of vitamin C can ward off the common cold. Pauling went further, by maintaining that vitamin C offers protection against some forms of cancer. While scientific studies have been unable to prove this theory, they do suggest that the vitamin can at least reduce the severity of the symptoms associated with colds.

Most animals can synthesize this vitamin in the liver, where glucose (a type of sugar that occurs widely in nature) is converted to ascorbic acid. This is not the case with at least four types of animal: monkeys, guinea pigs, Indian fruit bats, and humans, all of which must obtain vitamin C from their diets. Citrus fruits, berries, and some vegetables (e.g., tomatoes and peppers) are good sources of vitamin C. It is a fragile vitamin, one that is oxidized or destroyed easily. Food storage or food processing can render it ineffective; so, too, can soaking vitamin C-containing fruits and vegetables in water for long periods.

Vitamin Deficiencies and History

Most of the early history in the study of vitamins centered around what are now known as the water-soluble vitamins. Although vitamins as such were not discovered until early in the twentieth century, it was common knowledge long before that time that substances in certain foods were necessary for good health. An important turning point came in the mid-eighteenth century, with the work of the Scottish physician James Lind (1716-1794) on a vitamin deficiency condition that jeopardized England's vast merchant and military navies.

At a time when England had emerged as the world's leading sea power, even Her Majesty's sailing crews were at the mercy of a condition known as scurvy. Common among crews who had been at sea too long, scurvy could result in swollen joints, bleeding gums, loose teeth, and an inability to recover from wounds. Scientists today recognize scurvy as resulting from a deficiency of vitamin C, available in such citrus fruits as oranges. At the time, however, the concept of vitamins was unknown, and sailors at sea continued to live on a diet that consisted primarily of salted meats and hard biscuits—items that could be stored easily without spoilage in an era before refrigeration.

In 1746, Lind, a ship's doctor, observed that 80 of 350 seamen aboard his ship came down with scurvy during a 10-week cruise. Conducting a controlled experiment, he took 12 of the sailors in whom scurvy had developed and divided them into six groups. He gave each pair different substances, such as nutmeg, cider, seawater, and vinegar; the final pair was given lemons or oranges. The two men given the oranges and lemons both completely recovered in about a week. Not only was this a milestone in the history of vitamin research, but it also was the first example of a clinical trial, or the testing of a medication by careful and well-documented experimentation in which other variables or factors are kept unchanged.

It would be another half-century before the British navy adopted Lind's techniques. Another Scottish physician, Sir Gilbert Blane (1749-1834), had long fought for the adoption of Lind's methods, and finally, in 1796, he persuaded the navy to give each sailor a daily ration of lemons. At that time, the term lime was common for both lemons and limes, and, as a result, British sailors became known as limeys. Eventually, the treatment spread to the population as a whole, but outbreaks of scurvy continued until after World War I, when doctors isolated vitamin C as the controlling factor in scurvy prevention.

BERIBERI IN THE DUTCH EAST INDIES.

In 1897 the Dutch government sent the physician Christiaan Eijkman (1858-1930) as part of a government commission to the Dutch East Indies (now Indonesia), which had been long afflicted by a condition known as beriberi. There are various forms of this disease, including infant beriberi, which can kill a breast-feeding baby after the fifth month, as well as various juvenile and adult forms. In the childhood and adult versions of the disease, there is a preliminary condition of fatigue, loss of appetite, and a numb, tingling feeling in the legs. This condition can lead to either wet beriberi, characterized by the accumulation of fluid throughout the body and a rapid heart rate that can bring about sudden death, or dry beriberi, which is marked by a loss of sensation and weakness in the legs. The patient first needs to walk with the aid of a stick and then becomes bedridden and easy prey to infectious diseases.

Experimenting with birds, Eijkman noticed that some of the fowl experienced paralysis and polyneuritis (a disorder affecting several nerves at once), as in the dry form of beriberi. The director of the hospital had told Eijkman that he could not feed the birds with table scraps from the dining hall, where the diet was heavy in polished rice. The doctor thus was forced to feed his birds whole rice, and something amazing happened: the birds began to regain their ability to move and experienced no recurrence of paralysis.

Eijkman's colleagues rejected his claim that the birds had contracted some form of beriberi, though, in fact, he was correct. He was incorrect, however, in his supposition that the polished rice contained a toxin that was missing from the whole, unpolished rice. After Eijkman and the rest of the medical commission left the East Indies, another Dutch physician, Gerrit Grijns (1865-1944), stayed on to study the disease. He discovered that when the chickens were taken off the rice diet completely and fed meat instead, they did not show signs of the characteristic paralysis; if the meat was overcooked, however, the condition reappeared. In 1901, Grijns showed that beriberi could be cured by putting the rice polishings back into the rice. As it turned out, the husks and the meat contained vitamin B 1 , also present in wheat germ, whole grain and enriched bread, legumes, peanuts, and nuts.

PELLAGRA IN THE AMERICAS.

A vitamin-deficiency disease often associated with poverty, pellagra produces symptoms known as the "three Ds": diarrhea, dermatitis, and dementia, or mental deterioration. It was first identified in 1762 by the Spanish physician Gaspar Casal ( ca. 1680-1759), who wrote about the "mal de la rosa"—so called because of the reddened dermatitis that appeared around the back of the victim's neck—that afflicted sufferers in one particular region of Spain.

Casal was far ahead of his time in maintaining that inadequate nutrition caused pellagra, but for many centuries the belief persisted that the disease resulted from infection. The breakthrough came with the work of the American physician Joseph Goldberger (1874-1929), a member of the U.S. Public Health Service who studied the high numbers of pellagra cases among poor blacks and whites in the southern United States. Goldberger established that pellagra stems from insufficient niacin, which is required to release energy from glucose.

Niacin is present in whole grains, meat, fish, and dairy products. One of the foods from which niacin is not easily available is corn, and it so happened that corn products constituted a major part of the diet in areas suffering from high rates of pellagra. The poor of Spain and Latin America subsisted on a diet heavy in corn products, such as tortillas and polenta, while their counterparts in the southern United States survived on cornbread, grits, hominy, and other variants of corn. Although such foods made it possible to fill the stomach cheaply, this diet was killing people in large numbers because it was not delivering the essential B vitamin niacin.

MODERN KNOWLEDGE OF VITAMINS.

As it turned out, corn, in fact, does contain niacin, but to release the niacin from the large, fibrous molecules in corn, it is necessary to treat the corn with an alkaline solution, such as limewater. This is just one example of the vast knowledge that has accumulated since the time when the Polish-American biochemist Casimir Funk (1884-1967) coined the term vitamine in 1912. The first half of the word came from the Latin vita, or "life," and the second half reflected Funk's belief that all these substances belonged to a group of chemicals known as amines. Scientists later dropped the "e" when they discovered that not all vitamins contain an amine group.

In the director Stephen Spielberg's acclaimed 1987 film Empire of the Sun, one of the characters asks another, "Do you believe in vitamins?" The question reflects the relative newness of vitamins as an idea at the time when the movie was set, during World War II. After the war, interest in commercially produced vitamin supplements exploded, particularly among America's middle classes. Pauling's promotion of vitamin C, coming in the 1950s and 1960s, found a willing audience.

Although vitamin supplements remain a big business today, opinions vary as to the importance of enhancing one's diet with them. Many nutritionists insist that eating a well-balanced diet, consisting of the major food substances, is an effective and economical way to obtain nutrients for health. On the other hand, advocates of health foods and alternative medicine (medical practices that are not recognized officially by groups of university-trained and state-licensed medical doctors) insist that the recommended daily allowances established by the U.S. Food and Drug Administration do not provide sufficient vitamins for an average person.

The American Dietetic Association (ADA) recommends that nutrient needs come from a variety of foods taken from different dietary sources rather than from self-prescribed vitamin supplements. The organization makes allowances, however, for supplement usage by people who need extra doses of key vitamins and minerals. Examples include the use of iron supplements by women experiencing heavy menstrual bleeding as well as supplements of iron, folic acid, and calcium by pregnant women.

WHERE TO LEARN MORE

Apple, Rima D. Vitamania: Vitamins in American Culture. New Brunswick, NJ: Rutgers University Press, 1996.

Brody, Jane E., and Denise Grady. The New York Times Guide to Alternative Health: A Consumer Reference. New York: Times Books/Henry Holt, 2001.

Duyff, Roberta Larson. The American Dietetic Association's Complete Food and Nutrition Guide. Minneapolis, MN: Chronimed Publishing, 1998.

Kiple, Kenneth F., and Kriemhild Coneé Ornelas. T he Cambridge World History of Food. New York: Cambridge University Press, 2000.

Nardo, Don. Vitamins and Minerals. New York: Chelsea House Publishers, 1994.

Reference Guide for Vitamins (Web site). <http://www.realtime.net/anr/vitamins.html> .

Snyder, Carl H. The Extraordinary Chemistry of Ordinary Things. New York: John Wiley and Sons, 1998.

Vitamins and Coenzymes. Indiana State University (Web site). <http://www.indstate.edu/thcme/mwking/vitamins.html> .

The Vitamin Collection. Molecular Expressions: Exploring the World of Optics and Microscopy, Florida State University (Web site). <http://micro.magnet.fsu.edu/vitamins/> .

Vitamin-Deficiency Diseases. Medic Planet (Web site). <http://www.medic-planet.com/MP_article/internal_reference/Vitamin-deficiency_diseases> .

Vitamins and Minerals Topic Page. Food and Nutrition Information Center National Agricultural Library, U.S. Department of Agriculture (Web site). <http://www.nal.usda.gov/fnic/etext/000068.html> .



Also read article about Vitamins from Wikipedia

User Contributions:

Comment about this article, ask questions, or add new information about this topic: