Friction - Real-life applications



Friction Real Life Applications 2945
Photo by: plastique

Self-Motivation Through Friction

Friction, in fact, always opposes movement; why, then, is friction necessary—as indeed it is—for walking, and for keeping a car on the road? The answer relates to the differences between friction and inertia alluded to earlier. In situations of static friction, it is easy to see how a person might confuse friction with inertia, since both serve to keep an object from moving. In situations of sliding or rolling friction, however, it is easier to see the difference between friction and inertia.

Whereas friction is always opposed to movement, inertia is not. When an object is not moving, its inertia does oppose movement—but when the object is in motion, then inertia resists stopping. In the absence of friction or other forces, inertia allows an object to remain in motion forever. Imagine a hockey player hitting a puck across a very, very large rink. Because ice has a much smaller coefficient of friction with regard to the puck than does dirt or asphalt, the puck will travel much further. Still, however, the ice has some friction, and, therefore, the puck will come to a stop at some point.

Now suppose that instead of ice, the surface and objects in contact with it were friction-free, possessing a coefficient of zero. Then what would happen if the player hit the puck? Assuming for the purposes of this thought experiment, that the rink covered the entire surface of Earth, it would travel and travel and travel, ultimately going around the planet. It would never stop, because there would be no friction to stop it, and therefore inertia would have free rein.

The same would be true if one were to firmly push the hockey player with enough force (small in the absence of friction) to set him in motion: he would continue riding around the planet indefinitely, borne by his skates. But what if instead of being set in motion, the hockey player tried to set himself in motion by the action of his skates against the rink's surface?

He would be unable to move even a hair's breadth. The fact is that while static friction opposes the movement of an object from a position of rest to a state of motion, it may—assuming it can be overcome to begin motion at all—be indispensable to that movement. As with the skater in perpetual motion across the rink, the absence of friction means that inertia is "in control;" with friction, however, it is possible to overcome inertia.

Friction in Driving a Car

The same principle applies to a car's tires: if they were perfectly smooth—and, to make matters worse, the road were perfectly smooth as well—the vehicle would keep moving forward when the driver attempted to stop. For this reason, tires are designed with raised tread to maintain a high degree of friction, gripping the road tightly and dispersing water when the roadway is wet.

The force of friction, in fact, pervades the entire operation of a car, and makes it possible for the tires themselves to turn. The turning force, or torque, that the driver exerts on the steering wheel is converted into forces that drive the tires, and these in turn use friction to provide traction. Between steering wheel and tires, of course, are a number of steps, with the engine rotating the crankshaft and transmitting power to the clutch, which applies friction to translate the motion of the crankshaft to the gearbox.

When the driver of a car with a manual transmission presses down on the clutch pedal, this disengages the clutch itself. A clutch is a circular mechanism containing (among other things) a pressure plate, which lifts off the clutch plate. As a result, the flywheel—the instrument that actually transmits force from the crankshaft—is disengaged from the transmission shaft. With the clutch thus disengaged, the driver changes gears, and after the driver releases the clutch pedal, springs return the pressure plate and the clutch plate to their place against the fly-wheel. The flywheel then turns the transmission shaft.

Controlled friction in the clutch makes this operation possible; likewise the synchromesh within the gearbox uses friction to bring the gearwheels into alignment. This is a complicated process, but at the heart of it is an engagement of gear teeth in which friction forces them to come to the same speed.

Friction is also essential to stopping a car—not just with regard to the tires, but also with respect to the brakes. Whether they are disk brakes or drum brakes, two elements must come together with a force more powerful than the engine's, and friction provides that needed force. In disk brakes, brake pads apply friction to both sides of the spinning disks, and in drum brakes, brake shoes transmit friction to the inside of a spinning drum. This braking force is then transmitted to the tires, which apply friction to the road and thus stop the car.

Efficiency and Friction

The automobile is just one among many examples of a machine that could not operate without friction. The same is true of simple machines such as screws, as well as nails, pliers, bolts, and forceps. At the heart of this relationship is a paradox, however, because friction inevitably reduces the efficiency of machines: a car, as noted earlier, exerts fully one-quarter of its power simply on overcoming the force of friction both within its engine and from air resistance as it travels down the road.

In scientific terms, efficiency or mechanical advantage is measured by the ratio of force output to force input. Clearly, in most situations it is ideal to maximize output and minimize input, and over the years inventors have dreamed of creating a mechanism—a perpetual motion machine—to do just that. In this idealized machine, one would apply a certain amount of energy to set it into operation, and then it would never stop; hence the ratio of output to input would be nearly infinite.

Unfortunately, the perpetual motion machine is a dream every bit as elusive as the mythical Fountain of Youth. At least this is true on Earth, where friction will always cause a system to lose kinetic energy, or the energy of movement. No matter what the design, the machine will eventually lose energy and stop; however, this is not true in outer space, where friction is very small—though it still exists. In space it might truly be possible to set a machine in motion and let inertia do the rest; thus perhaps perpetual motion actually is more than a dream.

It should also be noted that mechanical advantage is not always desirable. A screw is a highly inefficient machine: one puts much more force into screwing it in than the screw will exert once it is in place. Yet this is exactly the purpose of a screw: an "efficient" one, or one that worked its way back out of the place into which it had been screwed, would in fact be of little use.

Once again, it is friction that provides a screw with its strangely efficient form of inefficiency. Nonetheless, friction, in spite of the advantages discussed above, is as undesirable as it is desirable. With friction, there is always something lost; however, there is a physical law that energy does not simply disappear; it just changes form. In the case of friction, the energy that could go to moving the machine is instead translated into sound—or even worse, heat.

When Sparks Fly

In movement involving friction, molecules vibrate, bringing about a rise in temperature. This can be easily demonstrated by simply rubbing one's hands together quickly, as a person is apt to do when cold: heat increases. For a machine composed of metal parts, this increase in temperature can be disastrous, leading to serious wear and damage. This is why various forms of lubricant are applied to systems subject to friction.

An automobile uses grease and oil, as well as ball bearings, which are tiny uniform balls of metal that imitate the behavior of oil-based substances on a large scale. In a molecule of oil—whether it is a petroleum-related oil or the type of oil that comes from living things—positive and negative electrical charges are distributed throughout the molecule. By contrast, in water the positive charges are at one end of the molecule and the negative at the other. This creates a tight bond as the positive end of one water molecule adheres to the negative end of another. With oil, the relative absence of attraction between molecules means that each is in effect a tiny ball separate from the others. The ball-like molecules "roll" between metal elements, providing the buffer necessary to reduce friction.

Yet for every statement one can make concerning friction, there is always another statement with which to counter it. Earlier it was noted that the wheel, because it reduced friction greatly, provided an enormous technological boost to societies. Yet long before the wheel—hundreds of thousands of years ago—an even more important technological breakthrough occurred when humans made a discovery that depended on maximizing friction: fire, or rather the means of making fire. Unlike the wheel, fire occurs in nature, and can spring from a number of causes, but when human beings harnessed the means of making fire on their own, they had to rely on the heat that comes from friction.

By the early nineteenth century, inventors had developed an easy method of creating fire by using a little stick with a phosphorus tip. This stick, of course, is known as a match. In a strike-anywhere match, the head contains all the chemicals needed to create a spark. To ignite this type of match, one need only create frictional heat by rubbing it against a surface, such as sandpaper, with a high coefficient of friction.

The chemicals necessary for ignition in safety matches, on the other hand, are dispersed between the match head and a treated strip, usually found on the side of the matchbox or match-book. The chemicals on the tip and those on the striking surface must come into contact for ignition to occur, but once again, there must be friction between the match head and the striking pad. Water reduces friction with its heavy bond, as it does with a car's tires on a rainy day, which explains why matches are useless when wet.

The Outer Limits of Friction

Clearly friction is a complex subject, and the discoveries of modern physics only promise to add to that complexity. In a February 1999 online article for Physical Review Focus, Dana Mackenzie reported that "Engineers hope to make microscopic engines and gears as ordinary in our lives as microscopic circuits are today. But before this dream becomes a reality, they will have to deal with laws of friction that are very different from those that apply to ordinary-sized machines."

The earlier statement that friction is proportional to weight, in fact, applies only in the realm of classical physics. The latter term refers to the studies of physicists up to the end of the nineteenth century, when the concerns were chiefly the workings of large objects whose operations could be discerned by the senses. Modern physics, on the other hand, focuses on atomic and molecular structures, and addresses physical behaviors that could not have been imagined prior to the twentieth century.

According to studies conducted by Alan Burns and others at Sandia National Laboratories in Albuquerque, New Mexico, molecular interactions between objects in very close proximity create a type of friction involving repulsion rather than attraction. This completely upsets the model of friction understood for more than a century, and indicates new frontiers of discovery concerning the workings of friction at a molecular level.

WHERE TO LEARN MORE

Beiser, Arthur. Physics, 5th ed. Reading, MA: Addison-Wesley, 1991.

Buller, Laura and Ron Taylor. Forces of Nature. Illustrations by John Hutchinson and Stan North. New York: Marshall Cavendish, 1990.

Dixon, Malcolm and Karen Smith. Forces and Movement. Mankato, MN: Smart Apple Media, 1998.

"Friction." How Stuff Works (Web site). <http://www.howstuffworks.com/search/index.htm?words=friction> (March 8, 2001).

"Friction and Interactions" (Web site). <http://www.cord.edu/dept/physics/p128/lecture99_12.html> (March 8, 2001).

Levy, Matthys and Richard Panchyk. Engineering the City: How Infrastructure Works. Chicago: Chicago Review Press, 2000.

Macaulay, David. The New Way Things Work. Boston: Houghton Mifflin, 1998.

Mackenzie, Dana. "Friction of Molecules." Physical Review Focus (Web site). <http://focus.aps.org/v3/st9.html (March 8, 2001).

Rutherford, F. James; Gerald Holton; and Fletcher G. Watson. Project Physics. New York: Holt, Rinehart, and Winston, 1981.

Skateboard Science (Web site). <http://www.exploratorium.edu/skateboarding/ (March 8, 2001).

Suplee, Curt. Everyday Science Explained. Washington, D.C.: National Geographic Society, 1996.



Also read article about Friction from Wikipedia

User Contributions:

1
Report this comment as inappropriate
May 1, 2013 @ 2:02 am
Friction is indeed very amazing. So happy I got more information about it.
2
Baston
Report this comment as inappropriate
May 9, 2014 @ 6:06 am
What a great idea! Thanks for the video. I am also a beginner sretsmaess. Someone gave me a great tip that might help for these cute clutches. When you are sewing the lining and the fabric/fleece together, start stitching on a short side. Stitch around all four corners, backstitching at the beginning and the end. Leave a 4 or 5 inch opening on that beginning short side for turning your fabric right side out. Because you have stitched all of your corners, it's easy to push them out to points and they are all nice a finished looking. And it makes it a little easier to turn the last edge under because you've stitched a little on either side of the opening it gives you a head start.Also, you can use a chopstick, or the non-pointy side of a skewer to push your corners out. It helps to create a sharper point. Hope this helps.I'm a huge fan of your blog. Thanks for all the work you put into it.Shannon R.Seattle, WA

Comment about this article, ask questions, or add new information about this topic:

CAPTCHA